Реферат: Системы радиочастотной идентификации
Идентификация животных. Системы инвентаризации.
Средние
10-15 МГц
Контроль доступа.
Смарт карты.
Высокие
850-950 МГц
2,4-5,0 ГГц
Большая дальность и скорость считывания, требуется точное
нацеливания считывателя, высокая стоимость меток.
Наблюдение за перевозкой грузов железной дорогой,
Системы взымания платы за пользование дорогой с водителей автомобилей.
Низкочастотные метки имеют встроенные антенны в виде многоконтурных (несколько сотен) обмоток. Пассивные системы данного диапазона имеют низкие цены, и в связи с физическими характеристиками, используются для подкожных меток при чипировании животных, людей и рыб. Однако, в связи с длиной волны, существуют проблемы со считыванием на большие расстояния, а также проблемы, связанные с появлением коллизий при считывании.
Системы средних частот (13МГц) дешевы, не имеют экологических и лицензионных проблем, хорошо стандартизованы, имеют широкую линейку решений. Применяются в платежных системах, логистике, идентификации личности. Для частоты 13,56 МГц разработан стандарт ISO 14443 (виды A/B). В отличие от Mifare 1К в данном стандарте обеспечена система диверсификации ключей, что позволяет создавать открытые системы. Используются стандартизованные алгоритмы шифрования.
На основе стандарта 14443 В разработано несколько десятков систем, например, система оплаты проезда общественного транспорта Парижского региона.
Для существовавших в данном диапазоне частот стандартов были найдены серьёзные проблемы в безопасности: совершенно отсутствовала криптография у дешёвых чипов карты Mifare Ultralight, введённая в использование в Нидерландах для системы оплаты проезда в городском общественном транспорте OV-chipkaart, позднее была взломана считавшаяся более надёжной карта Mifare Classic.
Как и для диапазона низких частот, в системах, построенных в диапазоне средних частот, существуют проблемы со считыванием на большие расстояния, считывание в условиях высокой влажности, наличия металла, а также проблемы, связанные с появлением коллизий при считывании.
Метки данного диапазона обладают наибольшей дальностью регистрации, во многих стандартах данного диапазона присутствуют антиколлизионные механизмы. Ориентированные изначально для нужд складской и производственной логистики, метки диапазона UHF не имели уникального идентификатора. Предполагалось, что идентификатором для метки будет служить EPC-номер (Electronic Product Code) товара, который каждый производитель будет заносить в метку самостоятельно при производстве. Однако скоро стало ясно, что помимо функции носителя EPC-номера товара хорошо бы возложить на метку ещё и функцию контроля подлинности. То есть возникло требование, противоречащее самому себе: одновременно обеспечить уникальность метки и позволить производителю записывать произвольный EPC-номер.
Долгое время не существовало чипов, которые бы удовлетворяли этим требованиям полностью. Выпущенный компанией Philips чип Gen 1.19 обладал неизменяемым идентификатором, но не имел никаких встроенных функций по паролированию банков памяти метки, и данные с метки мог считать кто угодно, имеющий соответствующее оборудование. Разработанные впоследствии чипы стандарта Gen 2.0 имели функции паролирования банков памяти (пароль на чтение, на запись), но не имели уникального идентификатора метки, что позволяло при желании создавать идентичные клоны меток.
Наконец, в 2008 году компания NXP выпустила два новых чипа, которые на сегодняшний день отвечают всем выше перечисленным требованиям. Чипы SL3S1202 и SL3FCS1002 выполнены в стандарте EPC Gen 2.0, но отличаются от всех своих предшественников тем, что поле памяти TID (Tag ID), в которое при производстве обычно пишется код типа метки (и он в рамках одного артикула не отличается от метки к метке), разбито на две части. Первые 32 бита отведены под код производителя метки и её марку, а вторые 32 бита — под уникальный номер самого чипа. Поле TID — неизменяемое, и, таким образом, каждая метка является уникальной. Новые чипы имеют все преимущества меток стандарта Gen 2.0. Каждый банк памяти может быть защищен от чтения или записи паролем, EPC-номер может быть записан производителем товара в момент маркировки.
В высокочастотных RFID-системах по сравнению со среднечастотными и низкочастотными ниже стоимость меток, при этом выше стоимость прочего оборудования.
В настоящее время частотный диапазон УВЧ открыт для свободного использования в Российской Федерации в так называемом «европейском» диапазоне — 863—868 МГЦ.
Высокочастотные метки имеют одноконтурные обмотки (диполь-антенна).
Метки ближнего поля (англ. UHF Near-Field), не являясь непосредственно радиометками, а используя магнитное поле антенны, позволяют решить проблему считывания в условиях высокой влажности, присутствия воды и металла. С помощью данной технологии ожидается начало массового применения RFID-меток в розничной торговле фармацевтическими товарами (нуждающимися в контроле подлинности, учёте, но при этом зачастую содержащими воду и металлические детали в упаковке).
Наименьшими размерами и стоимостью обладают пассивные метки класса Read Only (только чтение) и малой дальности (расстояние до считывателя не более 2 метров).
По типу источника питания RFID-метки делятся на пассивные, активные полупассивные
Активные и пассивные метки.
Радиочастотная метка обычно включает в себя приемник, передатчик, антенну и блок памяти для хранения информации. Приемник, передатчик и память конструктивно выполняются в виде отдельной микросхемы (чипа), поэтому внешне кажется, что радиочастотная метка состоит всего из двух частей: многовитковой антенны и чипа. Иногда в состав конструкции метки включается источник питания (например, литиевая батарейка).
Метки с источниками питания называются активными (Active). Дальность считывания активных меток не зависит от энергии считывателя.Они имеют большие размеры и могут быть оснащены дополнительной электроникой. Однако, такие метки наиболее дороги, а у батарей ограничено время работы.