Реферат: Системы цифрового видеонаблюдения при организации охранных структур на особо охраняемых объектах
Приведенное выше краткое описание структурных схем цифровых и аналоговых систем наблюдения, а также использование дополнительной информации позволяет сформулировать основные преимущества цифровых систем перед аналоговыми.
Преимущества цифровых систем перед аналоговыми.
1. Высокое качество всей системы в целом
2. Возможность хранения записанной информации сколь угодно долго без потерь в качестве.
3. Небольшие затраты на техническое обслуживание.
4. Одновременная работа режимов записи и воспроизведения.
5. Простота и скорость поиска нужного фрагмента или кадра.
6. Простота и надежность копирования на различные носители.(CD, DVD, DDS, стример) при полном сохранение качества исходного материала при копировании.
7. Возможность передачи видео информации по компьютерным сетям.
8. Гибкость и адаптивность (возможность гибко настраивать систему в зависимости от выполняемой задачи, стоящей перед пользователем)
9. Возможность доработки, модернизации системы, самостоятельной разработки дополнительных приложений.
10. Возможность получения высококачественного изображения.
11. Абсолютно стабильный и четкий стоп – кадр.
Эти факторы обусловили появление на рынке значительного числа всевозможных цифровых систем, различающихся как по качеству и функциональным возможностям, так и по стоимости.
Устройство и основные принципы работы элементов телевидения (видеокамер)
Основу любой системы телевизионного наблюдения составляют телевизионные камеры. В конструкции видеокамеры можно выделить следующие основные функциональные системы:
1. Преобразователь свет-сигнал.
2. Синхронизация.
3. Автодиафрагма.
4. Фокусное расстояние.
5. Относительное отверстие.
6. Формат матрицы.
7. Чувствительность.
8. Отношение сигнал шум.
9. Преобразователь свет-сигнал.
10. Устройства и основные принципы работы.
Преобразование свет-сигнал осуществляется прибором с зарядовой связью (ПЗС). Упрощенно прибор с зарядовой связью можно рассматривать как матрицу близко расположенных МДП-конденсаторов. Структуры металл-диэлектрик-полупроводник (МДП-структуры) научились получать в конце 50-х годов. Были найдены и развиты технологии, которые обеспечивали низкую плотность дефектов и примесей в поверхностном слое полупроводника.
С физической точки зрения ПЗС интересны тем, что электрический сигнал в них представлен не током или напряжением, как в большинстве других твердотельных приборах, а зарядом. При соответствующей последовательности тактовых импульсов напряжения на электродах МДП-конденсаторов зарядовые пакеты можно переносить между соседними элементами прибора. Поэтому такие приборы и названы приборами с переносом заряда или с зарядовой связью.
На рисунке показана структура одного элемента, линейного трехфазного ПЗС в режиме накопления. Структура состоит из слоя кремния р-типа (подложка), изолирующего слоя двуокиси кремния и набора пластин-электродов. Один из электродов смещен более положительно, чем остальные два, и именно под ним происходит накопление заряда. Полупроводник р-типа, получают добавлением (легирование) к кристаллу кремния акцепторных примесей, например, атомов бора. Акцепторная примесь создает в кристалле полупроводника свободные положительно заряженные носители — дырки. Дырки в полупроводнике р-типа являются основными носителями заряда, свободных электронов там очень мало. Если теперь подать небольшой положительный потенциал на один из электродов ячейки трехфазного ПЗС, а два других электрода оставить под нулевым потенциалом относительно подложки, то под положительно смещенным электродом образуется область, обедненная основными носителями - дырками. Они будут оттеснены вглубь кристалла. На языке энергетических диаграмм это означает, что под электродом формируется потенциальная яма.
В основе работы ПЗС лежит явление внутреннего фотоэффекта. Когда в кремнии поглощается фотон, то генерируется пара носителей заряда - электрон и дырка. Электростатическое поле в области пикселя “растаскивает” эту пару, вытесняя дырку вглубь кремния. Не основные носители заряда, электроны, будут накапливаться в потенциальной яме под электродом, к которому подведен положительный потенциал. Здесь они могут храниться достаточно длительное время, поскольку дырок в обедненной области нет и электроны не рекомбинируют. Носители, сгенерированные за пределами обедненной области, медленно движутся - диффундируют и, обычно, рекомбинируют с решеткой прежде, чем попадут под действие градиента поля обедненной области. Носители, сгенерированные вблизи обедненной области, могут диффундировать в стороны и могут попасть под соседний электрод. В красном и инфракрасном диапазонах длин волн ПЗС имеют разрешение хуже, чем в видимом диапазоне, так как красные фотоны проникают глубже в кристалл кремния и зарядовый пакет размывается.