Реферат: Схема и краткая характеристика сварки плавлением

Сварка плавящимся и неплавящимся электродом.

Плавление и перенос металла электрода в сварочную ванну. Скорость плавления электрода жестко связана с величиной сварочного тока. При сварке различных видов сварных соединений и типов швов требуется неодинаковая скорость плавления электрода. В одних случаях она должна быть минимальной, в других, наоборот, максимальной.

При сварке стыковых соединений без разделки кромок и без зазора расплавленный металл электрода образует усиление шва. По мере увеличения толщины свариваемых элементов для полного их проплавления необходимо увеличение силы тока дуги. Одновременно с этим увеличивается и количество расплавляющегося электродного металла. В результате образуются швы с чрезмерно большим усилением. Для получения швов с нормальным усилением следует искать пути снижения скорости плавления электрода или прибегать к разделке кромок, сварке с увеличенным фиксированным зазором.

При выполнении стыковых соединений с разделкой кромок, а также при сварке угловых швов желательно увеличивать скорость плавления электрода, поскольку в этих случаях производительность процесса в значительной мере определяется количеством электродного металла, расплавляющегося в единицу времени, необходимого для заполнения разделки или формирования угловых швов с заданным катетом.

На практике используют в качестве характеристики среднюю скорость плавления электрода, определяющуюся количеством расплавленного металла:

,

где aР ¾ коэффициент расплавления электрода, г/(А×ч); I д ¾ сила тока дуги, А; k ¾ коэффициент, зависящий от выбора единиц измерения.

Количество наплавленного металла или средняя скорость наплавки

,

где aН ¾ коэффициент наплавки, г/(А×ч).

Коэффициенты расплавления электрода и наплавки зависят от способа сварки и плотности тока на электроде. Для небольших плотностей тока при ручной дуговой сварке сталей их значение не превышает 7¾10 г/(А×ч). С увеличением плотности тока значение коэффициентов возрастает до 17 г/(А×ч) и более. Разница в коэффициентах aР и aН определяется потерями электродного металла на разбрызгивание, испарение и т.п.:

,

где y ¾ коэффициент потерь, %.

Для различных способов дуговой сварки потери составляют 1¾15%. С увеличением силы сварочного тока потери на разбрызгивание во многих случаях возрастают.

На формирование сварочной ванны и шва влияет характер переноса электродного металла при его плавлении. Перенос расплавленного металла с электрода в сварочную ванну осуществляется под действием электродинамических сил и газовых потоков, образующихся в столбе дуги.

Стойкость неплавящегося электрода и плавление присадочного металла. При сварке неплавящимся электродом отсутствует перенос расплавленного металла через дуговой промежуток. Это в значительной мере облегчает условия горения дуги и обусловливает более высокую ее стабильность. Присадочный металл по мере необходимости подается в головную часть сварочной ванны. В отличие от сварки плавящимся электродом скорость плавления присадочного металла не связана жесткой зависимостью с величиной сварочного тока. Количество присадочного металла, подаваемого в ванну, выбирают из условия обеспечения требуемой доли участия присадочного металла в образовании шва. При сварке стыковых соединений без разделки кромок присадочных металл необходим в основном для создания усиления шва.

Переход присадочного металла в сварочную ванну, минуя дуговой промежуток, исключает его разбрызгивание. Сокращаются потери на испарение и ограничивается взаимодействие расплавленного металла с газовой фазой столба дуги.

При сварке неплавящимся электродом создаются благоприятные условия для защиты ванны и формирования шва. Стойкость вольфрамового электрода в первую очередь определяется плотностью тока. Большое влияние оказывает род тока и полярность при постоянном его значении.

Способы сварки со шлаковой и газошлаковой защитой.

Шлаковая защита при дуговой сварке образуется за счет расплавления флюсов, электродных покрытий и сердечников порошковой проволоки. Наиболее надежна шлаковая защита при сварке под флюсом. Образование капель при плавлении электрода и их перенос происходит в объеме газового пузыря, заполненного парами металла и флюса. Взаимодействие с атмосферными газами практически исключается.

Менее надежна шлаковая защита при сварке покрытыми электродами и порошковой проволокой. Капли электродного металла проходят через открытый дуговой промежуток и взаимодействуют с атмосферой. Наличие на каплях шлаковой пленки не всегда предохраняет их от этого взаимодействия. При сварке наряду со шлаковой защитой должна создаваться и газовая защита. В электродные покрытия и сердечники порошковой проволоки в соответствии с этим вводят шлакообразующие и газообразующие компоненты.

Способы сварки в среде защитных газов.

При дуговой сварке применяют два способа газовой защиты: струйную местную защиту и общую защиту в камерах.

Струйная защита относится к наиболее распространенному способу местной защиты при сварке. Качество струйной защиты зависит от конструкции и размеров сопла, расхода защитного газа и расстояния от среза сопла до поверхности свариваемого металла.

На практике применяют три вида сопл: конические, цилиндрические и профилированные. Лучшая защита обеспечивается при применении профилированных сопл.

При сварке со струйной защитой обеспечивается защита только зоны расплавления. Возможен подсос воздуха в реакционную зону. Поэтому с точки зрения защиты ванны ее нельзя признать совершенной. Для улучшения защиты в ряде случаев, особенно при сварке активных металлов, применяют местные камеры.

Общая защита в герметичных камерах обеспечивает наиболее высокую степень защиты металла в процессе сварки. Это необходимо при сварке особо активных металлов и сплавов (например, титана, циркония, молибдена, тантала, ниобия и сплавов на их основе).

ЭЛЕКТРОШЛАКОВАЯ СВАРКА

Источником теплоты при электрошлаковой сварке служит расплавленный флюс. Количество теплоты, выделяющееся при прохождении тока через флюс, определяют по известному уравнению

,

где R В ¾ сопротивление шлаковой ванны.

Расплавленный шлак за счет прохождения электрического тока нагревается до высокой температуры. Теплота, выделяющаяся в шлаковой ванне при прохождении тока, обеспечивает расплавление основного и присадочного металлов с образованием общей сварочной ванны.

Для удержания ванны в вертикальном положении от вытекания используют различные приспособления: передвижные медные водоохлаждаемые ползуны и т.п. По мере плавления основного и присадочного металлов металлическая и шлаковая ванны поднимаются. Процесс ведется автоматически, причем наряду с заданной скоростью подачи присадочного металла поддерживается определенная глубина шлаковой и металлической ванны.

К-во Просмотров: 339
Бесплатно скачать Реферат: Схема и краткая характеристика сварки плавлением