Реферат: Схеми застосування інтеграла до знаходження геометричних і фізичних величин Обчислення площ пло
В п.9.2. мова йшла про те, коли розглядається площа криволінійної трапеції, обмеженої віссю кривою причому на відрізку може бути як додатною, так і від’ємною, то площа такої криволінійної трапеції обчислюється за формулою
(10.1)
Нехай у прямокутній системі координат фігура (рис.10.1) обмежена кривими
Виділимо у фігурі смужку шириною . Її довжина дорівнюватиме . Тоді площа смужки .
Звідси Отже,
(10.2)
Рис.10.1 Рис.10.2
Обчислимо тепер площу криволінійної трапеції у випадку, коли крива задана рівняннями в параметричній формі
(10.3)
Нехай рівняння (10.3) визначають деяку функцію на відрізку а тому площа криволінійної трапеції може бути обчислена за формулою
Зробивши заміну в цьому інтегралі і враховуючи, що одержимо
(10.4)
1.2. Площа криволінійного сектора в полярних координатах
Нехай криві, що обмежують фігуру, задані рівнянням в полярній системі координат і відрізками двох полярних радіусів (рис. 10.2) .Знайдемо площу фігури якщо: ,
У фігурі виділимо сектор з центральним кутом Вважатимемо, що дуги, які обмежують сектор , є дугами кіл радіусів . Очевидно, що площа сектора між дугами i дорівнює Інтегруючи, одержимо
(10.5)
Приклад 1.
Знайти площу фігури, обмеженої гіперболою , віссю і прямою, яка з’єднує точку , що лежить на гіперболі, з початком координат.
Р о з в ’ я з о к. З рівняння гіперболи маємо
Щоб знайти площу заштрихованої на рис.10.3 фігури, досить знайти площу фігури , а потім від площі трикутника відняти площу фігури .
Отже, .
Найкращим методом для обчислення цього інтеграла є інтегрування частинами. В результаті інтегрування дістанемо
Оскільки
то .
Цікаво, що цю площу можна записати у вигляді
Рис.10.3 Рис.10.4
,
де - функція, обернена відносно функції .
Пропонується переконатися в цьому самостійно.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--