Реферат: Сложные суждения

Логический союз эквивалентности выражается грамматическими союзами «тогда и только тогда, когда», «если и только если». Например, «Если и только если треугольник равносторонний, то он и равноугольный».

Символически эквивалентность записывается А «В или А ºВ («если и только если А , то В»).

Логическое значение эквивалентности соответствует таблице истинности:

А В А « В
И И И
И Л Л
Л И Л
Л Л И

Эквивалентное суждение со связанными по содержанию членами выражает одновременно условие достаточное и необходимое: (А→ В)˄(В→ А).

Равносильность выражений (А«В) и (А→ В)˄(В→А) может быть доказана с помощью таблицы истинности.


Отрицание

Отрицание – это логическая операция, с помощью которой из одного высказывания получают новое, при этом простое суждение Pпревращается в сложное, и если исходное простое суждение истинно, то новое сложное суждение ложно – «неверно, что P» или «высказывание А ложно тогда, когда высказывание А¯ истинно»

А А¯
И Л
Л И

Двойное отрицание – это операция по отрицанию отрицательного суждения. Повторное отрицание ведет к утверждению или, иначе, отрицание отрицания равносильно утверждению: А→ А˭– «если А, то неверно, что не-А», или А˭ºА – «неверно, что не-А, если и только если верно, что А».

А А¯
И И
Л Л

Выражение одних логических связок посредством других

Рассмотренные выше логические союзы взаимозаменяемы и выразимы через другие. Например:

А→ В= А˅В – импликация через дизъюнкцию

А→ В = В→ А – импликация через импликацию

А→ q= А˄ В – импликация через конъюнкцию

А˄В= А˅ В – конъюнкция через дизъюнкцию

А˅В= А˄ В – дизъюнкция через конъюнкцию

А˄В= А˅ В – конъюнкция через дизъюнкцию


Таблицы истинности

Таблица истинности – это таблица, устанавливающая соответствие между всеми возможными наборами логических переменных, входящих в логическую функцию, и значениями функции.

А В А¯ В¯ А ˄ В А ˅ В А→В А « В
И И Л Л И И И И
И Л Л И Л И Л Л
Л И И Л Л И И Л
Л Л И И И Л И И

Таблицы истинности находят широкое применение для

· Вычисления истинности сложных высказываний;

· Установления эквивалентности высказываний;

· Определения тавтологий.

Равносильные формулы логики высказывания – это выказывания, которые принимают одинаковое значение истинности при одних и тех же значениях элементарных высказываний, входящих в эти формы. Например, А→В, В¯→А¯

Тождественно-истинная формула (тавтология) – это формула, которая принимает значения истины при всех значениях, входящих в нее элементарных высказываний

Тождественно-ложная формула (противоречие) – формула, которая при всех значениях, входящих в нее элементарных высказываний, принимает значение лжи.

Пример:

(А¯˅ В)→(А˄В)


А А¯ В А¯ ˅ В А ˄ В (А¯ ˅ В)→(А ˄ В)
И Л И И И И
И Л Л Л Л И
Л И И И Л Л
Л И Л И Л Л

Список использованной литературы

1. М.Д. Купарашвили, А.В. Нехаев, В.И. Разумов, Н.А. Черняк «Логика. Учебное пособие», Омск, 2005.

К-во Просмотров: 741
Бесплатно скачать Реферат: Сложные суждения