Реферат: Смолы природные и синтетические
Из фторопласта-4 изготавливают тонкие конденсаторные и электроизоляционные пленки толщиной 5...200 мкм. В зависимости от способа изготовления выпускаются ориентированные и неориентированные пленки. В радиоэлектронике из фторопласта изготавливают химическую посуду для выполнения технологических операций в агрессивных средах; в оснастке для температурных испытаний, так как он хорошо переносит резкую смену температур в широком диапазоне; в вакуумных вентилях.
Фторопласт-3 (политрифторхлорэтилен) - полимер трихлорэтилена, в результате замены в элементарном звене одного атома фтора на атом хлора превращается в полярный диэлектрик. Фторопласт-3 обладает следующими свойствами: нижний предел рабочей температуры 195 °С; более высокие механические свойства, чем у фторопласта-4; влагостойкость выше, чем у фторопласта-4; нагревостойкость ниже, чем у фторопласта-4, составляет 125°С; уступает фторопласту-4 по электрическим свойствам; высокая химическая стойкость, но ниже, чем у фторопласта-4; влагостоек; высокая дугостойкость; технология получения проще, чем фторопласта-4; дешевле фторопласта-4. Выпускается в вице тонкого порошка белого цвета или полупрозрачного роговидного поделочного материала. Применяется главным образом в виде суспензий для антикоррозионных покрытий. Спиртовые суспензии фторопласта-3 используют для получения покрытий на металлах (и том числе и на меди) и керамике. Эти покрытия сохраняют свои свойства при температуре выше 100°С. Изоляция проводов и кабелей из фторопласга-3 позволяет эксплуатировать их при температуре 150 °С во влажных и агрессивных средах.
Кремнийорганические полимеры (полисилоксаны) представляют собой материалы, которые являются промежуточным звеном между органическими и неорганическими материалами. В их состав кроме характерного для органических полимеров углерода С входит кремний Si. Основу строения их молекул образует силоксанная цепь чередующихся атомов кремния и кислорода. Кремнийорганические полимеры могут быть термопластичными с линейным строением и термореактивными с образованием пространственных структур. Энергии силоксановой связи Si -- О больше, чем энергия связи между двумя атомами углерода С - С , что и определяет более высокую нагревостойкость кремнийорганических полимеров по сравнению с большинством из рассмотренных. Атом кремния, связанный с кислородом, не может окисляться дальше, поэтому молекулы образовавшегося полимера при нагревании не распадаются и вещество обладает повышенной нагревостойкостью.
Кремнийорганические полимеры обладают следующими характеристиками: высокие электроизоляционные свойства; дугостойкость; теплостойкость (способны длительно выдерживать температуру до 200 °С и кратковременно до температуры 5000 С); водостойкость (гидрофобность), не смачиваются водой, так как образуют на поверхности тончайшую пленку, которая не впитывается и не пропускает воду; устойчивость к действию грибковой плесени; морозостойкость; плохая адгезия (Это слипание поверхностей двух разнородных твердых тел или жидкостей) к большинству других материалов; низкая маслостойкость; достаточно высокая стоимость.
В зависимости от исходных веществ и технологии изготовления получают кремнийорганические пластмассы, клеи, лаки, компаунды.
4. Поликонденсационные синтетические полимеры.
В реакции поликонденсации участвуют не менее двух химических веществ. В результате образуются полимеры пространственной структуры, из которых получают прочные и теплостойкие термореактивные материалы. Продуктами поликонденсации являются: фенолформальдегидные, полиэфирные, эпоксидные и полиамидные смолы.
Фенолформальдегидные смолы. Фенолформальдегидные смолы получают путем поликонденсации фенола в водном растворе формальдегида при температуре 70...90°С в присутствии катализатора (кислоты или щелочи). Они могут быть термореактивными и термопластичными.
Важнейшей особенностью фенолформальдегидных смол является их способность в сочетании с различными наполнителями образовывать фенопласты , которые обладают следующими свойствами: высокая прочность, хорошие электроизоляционные свойства, способность длительное время функционировать при высоких температурах, способность функционировать в любых климатических условиях.Фенолформальдегидные смолы способны совмещаться со многими полимерами и образовывать сополимеры, которые обладают свойствами фенопласта и всеми положительными качествами совмещенного с ним компонента.
Эти смолы подразделяют на резольные и новолачные .Если процесс ведут с избытком формальдегида в присутствии щелочи, то получают смолу, которая называется бакелитовой. Она может находиться в трех стадиях: резол (находится в твердом или жидком состоянии, может растворяться в органических растворителях и плавиться); резитол (твердая смола, не растворяется в органических растворителях, но набухает в них; не плавится, но может размягчаться при повышении температуры); резит (твердая смола, не набухает в растворителях, не плавится, обладает механической прочностью, хорошими электроизоляционными свойствами, устойчива в водных и слабокислых средах, бензине, маслах).
Резольные смолы - термореактивные материалы, полярные диэлектрики. Применяются для изготовления таких слоистых пластиков, как текстолит, гетинакс; для композиционных пресс-материалов (фенопластов); трубок, клеев и других материалов. Если процесс ведут с избытком фенола в присутствии кислых катализаторов (соляной или щавелевой кислоты), то получают твердые, хрупкие, прозрачные термопластичные смолы, которые называют новолаками. Новолаки термопластичны, плавятся при нагревании до температуры 100...120°С; растворяются в спирте, ацетоне и других органических растворителях. Они имеют невысокие электроизоляционные свойства, особенно во влажной атмосфере; низкую стойкость к искровым разрядам. Новолачные смолы отличаются друг от друга содержанием фенола (от 2 до 9%). При добавлении 10...15%-го уротропина они переходят в термореактивный резит. Применяют для изготовления корпусов приборов, плат, разъемов, различных кнопок и ручек управления радиоаппаратуры, лака и как заменитель шеллака (Это смола, выделяемая насекомыми, обитающими на побегах некоторых тропических растений; применяется для изготовления лаков и политур.).
Полиэфирные смолы. Полиэфирные смолы получают в результате реакции поликонденсации различных многоатомных спиртов (гликоля, глицерина и др.) и многоосновных органических кислот (фталевой, малеиновой и др.) или их ангидридов. По физическим свойствам они близки к природным смолам (канифоль, шеллак). Из полиэфирных смол наибольшее распространение получили лавсановая смола (полиэтилентетрафталат), глифталевая смола, поликарбонаты.
Лавсановую смолу (полиэтилентетрафталат , лавсан ) получают поликонденсацией терефталевой кислоты и этиленгликоля. Он является термопластичным диэлектриком кристаллического или аморфного строения. В результате реакции поликонденсации терефталевой кислоты и этиленгликоля при медленном охлаждении образуется непрозрачный кристаллический лавсан (кристаллическая фаза до 7.5°/о). Кристаллический лавсан имеет высокую температуру плавления 265°С; высокую механическую прочность в широком диапазоне температур; хорошие электроизоляционные свойства; стоек к действию слабых щелочей, соляной кислоты, эфиров, масел, жиров, плесени и грибков; не устойчив к действию крепкой азотной и серной кислот, фенола, хлора; светопроницаемость пленки такая же, как у стекла, а также имеет малые гигроскопичность и газопроницаемость. Кристаллический лавсан стареет под действием солнечных лучей. Лавсан кристаллического строения применяют для изготовления волокон, пряжи, тканей, тонких электроизоляционных пленок. Волокна и пленки используют для изоляции проводов и кабелей. Лавсановая конденсаторная пленка обладает высокой электрическ