Реферат: Софизмы
Но вдруг оказалось, что диагональ квадрата и его сторона не имеют такой общей меры, и их частное нельзя было выразить с помощью известных чисел. Парадокс состоял в том, что по отдельности каждая из несоизмеримых величин может быть измерена и количественно точно определена, а их отношение - нет. К примеру, если возьмем сторону квадрата и начнем ее откладывать на диагонали, то обнаружим, что она укладывается только один раз и остается остаток. Тогда, если мы уложим остаток в сторону квадрата, то все будет ОК. Но и он не умещается. Далее полученный остаток не равный 2 не умещается в остаток не равный 1 и так далее.
В результате это отношение было выражено как корень квадратный из 2. Позднее нашли и другие несоизмеримые величины, такие как отношение длины окружности к диаметру и площади круга к площади квадрата, построенному на радиусе (оба равняются числу π).
Т.к. не находилось физического истолкования этих чисел, которое находилось для рациональных (самое банальное - две коровы, высота сооружения - тридцать три целых и половина камня), то греки придумали иррациональные, т.е. "бессмысленные", числа внедрить в геометрию, обозначать ими длины определенных отрезков, а не числа.
Парадокс бесконечно малых величин
Математический кризис в этой области существовал в период XVII - XVIII веков.
Бесконечно малые - это переменные величины, стремящиеся к нулю, или, если быть точнее, к пределу, равному нулю. Проблема состояла в их туманном понимании: то они рассматриваются как числа равные нулю, то как ему неравные. Причем, при таком подходе, люди рассматривали их как постоянные величины. Тогда из этого и из названия таких величин следует, что бесконечное является чем-то завершенным.
Кризис перестал быть таковым после создания теории пределов в начале XIX века французским математиком Огюстеном Луи Коши (1789 - 1857). С того момента бесконечно малые величины рассматриваются как постоянно изменяющиеся, а не постоянные, стремящиеся к пределу, но никогда его не достигающие. Постоянно изменяющиеся числа!
Парадокс Рассела
Парадокс связан с теорией множеств.
В письме от 16 июня 1902 года Готтлобу Фреге, уже завершавшему свой трехтомный труд, частью изданный, "Обоснования арифметики", венчавший усилия логицистов, Бертран Артур Уильям Рассел (1872 - 1970) сообщил о том, что обнаружил парадокс множества всех нормальных множеств (нормальным множеством называется множество, не содержащее себя в качестве элемента), указывая на противоречивость исходных позиций Фреге, тем самым чуть-чуть его обломав. Парадокс имеет n-ое количество вариаций.
Например, "каталог всех нормальных каталогов".
Каталоги подразделяются на два вида: 1) нормальные, которые в числе перечисленных в них каталогов не упоминают себя, и 2) ненормальные, которые входят в число перечисляемых ими каталогов.
Библиотекарю дается задание составить каталог всех нормальных каталогов и только нормальных каталогов. Должен ли он при составлении своего каталога его упомянуть? Если он его не упомянет, то составленный им каталог будет нормальным. Но такой каталог должен упомянут, а тогда это уже ненормальный каталог, и из списка должен быть вычеркнут. Библиотекарь не может ни упомянуть, ни не упомянуть свой каталог.
Теперь расскажем о вариациях этого парадокса. Начнем с более простого и известного.
Парадокс парикмахера (приписывается также Бертрану Расселу)
В некой деревни (некотором взводе и т.д.), в которой живет один-единственный парикмахер, был издан указ: "Парикмахер имеет право брить тех и только тех жителей деревни, которые не бреются сами". Может ли парикмахер брить самого себя?
Парадокс "мэр города"
Каждый мэр города живет или в своем городе, или вне его. Был выделен один специальный город, где бы жили мэры, не живущие в своих городах. Где должен жить мэр этого специального города?
Парадокс Кантора (1899)
Согласно одной из теорем немецкого математика Георга Кантора (1845 - 1918), развившего уже упомянутую теорию множеств, не существует самого мощного множества. Сие ввиду того, что для любого сколь угодно мощного множества можно указать еще более мощное. С другой стороны, интуитивно очевидно, что множество всех множеств должно быть самым мощным, ведь оно включает в себя все возможные множества.
Другими словами, пусть множество всех множеств M содержит в себе множество всех своих подмножеств (ведь оно же множество всех множеств). Если первое имеет мощность m, то мощность второго 2m , что больше m. Следовательно, множество M не содержит множество всех своих подмножеств, а, значит, не может быть множеством всех множеств.
Парадокс изобретателя
Начнем с одной из его математических интерпретаций:
Попробуем доказать методом математической индукции неравенство
База при n = 1 очевидна.
Предполагая, что для некоторого k наше неравенство верно, и начиная доказательство для k + 1, получим
и
Нам остается доказать, что
- тогда наше неравенство 100% истинно.
Возведем обе части неравенства в квадрат и, после алгебраических преобразований, получим
(k + 1) (2k + 1)2 <= k (2k + 2)2 и, раскрыв скобки,
4k3 + 8k2 + 5k + 1 <= 4k3 + 8k2 + 4k