Реферат: Сорбенты

Первоначально использовали для прививки промышленно доступные три- и дихлорсиланы (октадецилтрихлорсилан и др.), которые, будучи ди- и трифунк-циональными, способны вступать друг с другом в реакцию полимеризации до того, как вступят в реакцию с силанольными группами. Эта полимеризация приводит к тому, что на поверхности могут образоваться значительно более толстые, чем мономолекулярные, полимерные слои фазы (более или менее сильно привитые к поверхности силикагелевой матрицы). В этом случае содержание привитого углерода, определяемое сжиганием, окажется выше, чем теоретически должно привиться по схеме монослойного покрытия поверхности силикагеля. При этом, несмотря на сильное удерживание пробы из-за высокого содержания привитой фазы, эффективность разделения за счет затрудненной диффузии в толстых полимерных пленках может заметно упасть. В то же время большие участки поверхности силикагеля окажутся не покрытыми фазой, что приведет к сильному взаимодействию анализируемых веществ с неэкранированными силанольными группами.

Старые, давно разработанные обращенно-фазные сорбенты, как правило, получали обработкой силикагеля октадецил- или октилтрихлорсиланами. При этом покрытие поверхности было неполным, а привитые слои в той или иной степени (в зависимости от содержания воды в растворителе, степени безводности силикагеля, герметичности аппаратуры, технологии и т.д.) были полимеризованы.

Работа по улучшению качества привитого слоя велась разными учеными постоянно и в разных направлениях. С целью устранения полимеризации прививаемого агента было предложено использовать монохлорсиланы (например, диметилокта-децилхлорсилан, диметилоктилхлорсилан и др.), которые по природе своей монофункциональны и могут дать только мономерный привитой слой. Вода дезактивирует монохлорсиланы, вступая с ними в реакцию, однако в реакцию прививки они уже не вступают и после окончания реакции отмываются вместе непрореагировавшим исходным алкилдиметилхлорсиланом. С целью устранения влияния остаточных силанольных групп было предложено после проведения прививки вести так называемое «окончательное замещение», или «энд кэппинг». В этом случае после прививки основной фазы сорбент обрабатывают сильными реагентами с минимальным мольным объемом (на пример, триметилхлорсиланом), которые блокируют основную массу непрореагировавших силанольных групп. С целью получения сорбентов с более воспроизводимыми хроматографическими свойствами значительно больше внимания стало удеяться качеству растворителей и прививаемых силанов, подготовке (гидроксилированию) исходного силикагеля.

По мере разработки усовершенствованных методов прививки обращенных фаз практически все фирмы имели возможность использовать их для производства нового поколения сорбентов. Тем не менее не было прекращено производство старых сорбентов. В чем причина этого? Причин несколько, но основными являются две: наличие – налаженного производства сорбентов по старой технологии и нежелание его прекращать или перестраивать; разработанные методы анализа разных смесей и требования потребителей, не желающих менять свои методики анализа. Более консервативные фирмы, имеющие хороший сбыт старых обращенно-фазных сорбентов, продолжают их выпускать, а более прогрессивные наряду с выпуском старых организуют выпуск новых модификаций сорбентов, вводя для них отличительные знаки или цифры. Так, фирма «Ватман» имеет четыре варианта сорбента «октадецилсилан на силикагеле», при этом силикагелевая матрица одна и та же, фирма «Уотерс» – не менее трех, различающихся методом прививки и силикагелевыми матрицами (два сферической формы и один – неправильной), фирма «Фэйс Сепарейшн» – два варианта на одной силикагелевой матрице и т.д.

Ознакомившись с этими данными, начинающий и даже более опытный специалист по ВЭЖХ обычно задает вопрос: какой же обращенно-фазный сорбент следует считать наилучшим и приближающимся к идеальному? Ответить на такой вопрос конкретным названием сорбента, к сожалению, невозможно по многим причинам. Основной из них является то, что наилучшим, с точки зрения хроматографии, является тот сорбент, который обеспечивает для данной смеси наилучшее разделение в кратчайший срок. Зачастую сниженная химическая однородность поверхности старых сорбентов в результате комбинированного (распределительного и адсорбционного, иногда в сочетании с ионообменным) механизма удерживания обеспечивает такое разделение, а сорбент с химически более однородной поверхностью не обеспечивает.

Однако, если поставить вопрос в другой форме, а именно: какой сорбент теоретически является идеальным для обращенно-фазной хроматографии и каким требованиям должен отвечать соответствующий реальный сорбент – ответить можно более конкретно. Идеальным для обращенно-фазной хроматографии следует считать сорбент, обеспечивающий «чисто обращенно-фазное» взаимодействие растворенного вещества с его поверхностью, т.е. при полном отсутствии влияния адсорбции, взаимодействия с полярны. ми группами, ионообменных и эксклюзионных процессов. Исходя из этого, приближающийся к идеальному реальный сорбент должен иметь максимально полное покрытие поверхности мономолекулярным слоем привитой фазы, в нем должны отсутствовать доступные для взаимодействия с анализируемыми веществами силанольные и другие полярные группы или группы с ионообменными свойствами, он должен иметь минимальное количество таких групп, которые экранированы и недоступны для подобных взаимодействий (теоретически), и иметь поры, практически исключающие вклад в удерживание анализируемых веществ эксклюзионных процессов. Такой сорбент должен, по имеющимся представлениям, иметь поры размером 10–30 нм (для анализа веществ с молекулярной массой до 800–1000). Перед прививкой поверхность сорбента должна быть полностью гидроксилирована, однако сорбент не должен содержать адсорбированной воды. Прививку следует проводить с использованием монохлорсиланов, например октадецилдиметилхлорсилана, в условиях, обеспечивающих наиболее полное протекание реакции с силанольными группами. После окончания прививки проводят «энд кеппинг», т.е. обработку триметилхлорсиланом для окончательного устранения доступных силанольных групп на поверхности сорбента. Наконец, сорбент должен быть полностью отмыт после окончания реакции от всех остатков использовавшихся рактивов и побочных продуктов реакции.

Каждому хроматографисту приходится решать, какой же из доступных для него обращенно-фазных сорбентов является наиболее приближающимся к идеальному. При этом ему приводится пользоваться данными фирмы о размере пор (среднем) У их кривой распределения, об объеме пор, поверхности сорбента, прививаемом агенте, наличии или отсутствии дополнительной обработки («энд кэппинга»). Эти данные, как правило, неполные и не содержат многих важных сведений, касающихся технологии и в большой мере определяющих качество сорбента. кроме того, многие данные носят рекламный характер.

Силикагель, используемый как матрица для последующей прививки неподвижной фазы, играет важнейшую роль в определении конечных свойств получаемого сорбента. Он имеет пространственно-пористую структуру, образованную диоксидом кремния в процессе образования золя, геля и последующей его сушки с удалением физически сорбированной воды. В зависимости от условий формования силикагеля могут быть получены образцы со средними размерами пор от 3 до 10 нм. За счет последующей гидротермальной обработки силикагеля может быть достигнуто значительное увеличение размера пор (до 20–50 нм и более) при сохранении в основном объема пор. Методами формования микросферических сорбентов для ВЭЖХ из тетраэтоксисилана за счет варьирования условий формования и отверждения, выбора растворителей и т.п. удается добиться получения силикагеля с достаточно высокой пористостью (свободный объем пор 0,7–1,2 мл/л) и порами от 5 до 400 нм и более.

Какую же силикагелевую матрицу использовать для прививки неподвижной фазы? Следует учитывать ряд важных обстоятельств. Если использовать матрицу с порами 3–5 нм, размер таких пор соизмерим с длиной цепи октадецилсилана (около 1 нм). Если предположить плотную прививку к такому сорбенту октадецилсилановых групп, становится очевидным, что узкие поры уменьшатся в диаметре очень значительно (некоторые даже вообще закроются) и станут недоступными для попадания в них крупных анализируемых молекул. Это может внести существенный вклад в изменение удерживания и порядка выхода компонентов. Если первоначально для прививки использовали силикагели с размерами пор 5–6 нм, то в последующем перешли к порам около 10 нм, а сейчас считают более целесообразным даже 15–30 нм. Это связано со все возрастающим использованием привитых сорбентов для анализа р больших по молекулярной массе биополимеров, таких, как белки, полипептиды и др.

Кроме размера пор, большую роль играет объем пор силикагеля и его поверхность. Если рост поверхности дает увеличение количества силанольных групп (их плотность около 5 на 1 нм2 ) и количества привитой фазы при равной плотности прививки, то рост объема пор играет сложную роль. При увеличении объема пор не только увеличивается проницаемость силикагеля, но и уменьшается объем самого диоксида кремния и соответственно прочность силикагеля; он легче разрушается в процессе транспортировки, при набивке колонок, повышении давления при эксплуатации колонок. Правда, прочность определяется не только толщиной стенок ячеек силикагеля, но и их структурой.

Относительно распределения пор силикагеля по размеру можно сказать, что есть образцы как с более узким, так и с более широким распределением. Кажется желательным иметь более узкий диапазон распределения пор по размерам, так как в этом случае однородность пор приводит к большей однородности прививки, ситовых эффектов и др.

Для качественной прививки фазы к силикагелю важна подготовка его поверхности перед прививкой. Поверхность должна быть полностью гидроксилирована и не содержать сорбированной воды. Если гидроксилирование поверхности проведено не полностью (например, силикагель пересушен выше 180–200 °С) это приводит к тому, что образовавшиеся силоксановые группы не вступают в реакцию прививки, и количество привитой фазы уменьшается. С другой стороны, при последующем использовании такого сорбента его свойства в процессе эксплуатации в водных средах будут меняться, так как возможен гидролиз силоксановых групп с образованием новых активных силанольных групп.

Гидроксилирование проводят кипячением силикагеля в воде в присутствии кислот в течение нескольких часов и затем сушат при температуре до 150 °С. Сушка должна обеспечить удаление физически сорбированной воды, так как она приводит к бесполезному расходу прививаемого хлорсилана, загрязнению сорбента побочными продуктами реакции и изменению выбранного мольного соотношения хлорсилана и силанольных групп.

Следует ли предпочесть сферические частицы матрицы частицам неправильной формы? Однозначного ответа нет. Но большинство исследователей предпочитают частицы правильной сферической формы, которые должны давать более плотно и равномерно упакованный слой сорбента, снижать сопротивление потоку, меньше разрушаться в процессе набивки и работы колонок и т.п. Пока никто еще убедительно не продемонстрировал заметных преимуществ сферических частиц; однако следует отметить, что большинство вновь появляющихся сорбентов являются сферическими микрочастицами.

Остановимся теперь на выборе прививаемого агента. Если вначале были испробованы многие классы прививаемых агентов, то в настоящее время практически остался один тип – хлop- или алкоксипроизводные алкилсиланов, дающие в провесе прививки довольно стойкую к гидролизу или расщепленную связь Si-О–Si-С. Метод прививки с образованием еще более прочной связи Si-С, заключающийся в замене в силанольных группах силикагеля гидроксильной группы на галоген (хлорирование силикагеля) и последующем взаимодействии галогена, например с бензиллитием используется только в исследовательской работе и мало пригоден для промышленного роизводства из-за взрывоопасности и нетехнологичности.

Алкилхлорсиланы, наиболее дешевые и доступные из прививаемых агентов, могут быть трех типов: алкилтрихлорсиланы, диалкилдихлорсиланы и триалкилхлорсиланы (вместо алкила может быть и арил). Из этих трех наиболее дешевый и доступный продукт – алкилтрихлорсиланы, которые и использовались практически во всех ранних работах и в производстве первых привито-фаэных сорбентов, появившихся на рынке. Однако для получения мономерного привитого слоя с применением этИХ силанов, имеющих три реакционноспособные группы, требуется очень высокий технический уровень работы, который относительно легко достигается в лаборатории, но трудно достижим на производстве. Если трихлорсиланы вступают в кон-акт с любым содержащим следы воды веществом (недосушенным силикагелем, воздухом, растворителем и др.), они немедленно отнимают воду, вступая в реакции.

Образующиеся при этом димеры, тримеры и продукты с еще большей степенью полимеризации реагируют с силанольнымв группами силикагеля, давая вместо мономерного привитой полимерный слой фазы. Этот полимерный слой, естественно, является неравномерным и большим по толщине, чем мономерный. Диффузия анализируемых молекул в таких более толстых пленках замедлена, и как правило, эффективность колонок с такими сорбентами более низкая. Другим недостатком является то, что те атомы хлора в молекуле, которые не прореагироваЛИ с силанольными группами из-за пространственных затруднений, могут в дальнейшем гидролизоваться в процессе работы вводными растворителями с образованием полярных силанольных групп. Последние могут взаимодействовать с анализируемыми веществами, имеющими полярные группы, изменяя времена удерживания.

Однако полимерные слои, особенно имеющие небольшую толщину и получаемые при малой степени полимеризации трихлорсиланов до и в процессе прививки, имеют и некоторые преимущества перед мономерным привитым слоем. В частности, если толщина слоя небольшая, то скорость диффузии анализируемых молекул уменьшается незначительно; в то же время такая полимерная молекула соединена с силикагелевой матрицей не одной, как мономерная, а многими связями. Поэтому разрыв одной связи, например, в результате гидролиза, приводит к отрыву и переходу в подвижную фазу мономерной молекулы, тогда как полимерная удерживается на месте другими связями и продолжает участвовать в разделении до разрыва всех удерживающих ее связей. Это важно, если по условиям анализа требуется использовать растворитель с рН<3 или >8, что ускоряет протекание гидролиза и отщепления привитой фазы.

Как видно из приведенной схемы димеризации алкилтрихлорсилана, если исходная молекула имеет три реакционно-способных хлора, то димер – четыре, соответственно тример будет иметь их 5, тетрамер – 6 и т.д. В этом случае, как мы видим, с увеличением молекулярной массы полимера число потенциальных центров прививки молекулы к силикагелю растет. Однако и пространственные затруднения при взаимодействии такой молекулы с силикагелевой матрицей также возрастают по мере роста ее молекулярной массы, поэтому по мере достижения некоторой молекулярной массы количество реально образующихся связей прививаемой фазы и силикагелевой матрицы доходит до максимума, а в дальнейшем начинает снижаться.

По приведенным выше схемам прививают такие распространенные агенты, как октилтрихлорсилан, октадецилтрихлорсилан и др.

По несколько другой схеме полимеризация осуществляется, если прививаемый агент – диалкилдихлорсилан (или алкиларилдихлорсилан, или диарилдихлорсилан).

Образующиеся при этой реакции димеры, тримеры и полимеры также могут реагировать с силанольными группами силикагеля, давая вместо привитого мономерного привитой полимерный слой фазы. Однако этот полимер отличается от того, который образуется при реакции с силикагелевой матрицей алкилтрихлорсиланов. Первое отличие состоит в том, что он получается линейным по цепи – Si-О–Si-О–Si-О–, поскольку исходный диалкилдихлорсилан и его димер, тример, тетрамер и т.д. являются бифункциональными и содержат по два активных атома хлора. Во-вторых, если прививка такого полимера к силикагелевой матрице происходит, она идет только в одной или в двух точках, т.е. отрыв при гидролизе такой привитой молекулы протекает более легко (достаточно разорваться одной или двум связям, и молекула полимера отрывается от матрицы и переходит в подвижную фазу). По указанной схеме прививают диметилдихлорсилан, дифенилдихлорсилан и др.

Наконец, если прививаемый агент является триалкилмонохлороиланом, он тоже может реагировать с водой, присутствующей в реакционной среде. Однако его реакционная способность значительно ниже, чем у ди- и трихлорсиланов.

Так как димер не имеет реакционноспособных атомов хлора то он не вступает ни в реакцию дальнейшей полимеризации, ни в реакцию прививки

К-во Просмотров: 265
Бесплатно скачать Реферат: Сорбенты