Реферат: Современные криптографические методы

Последнее преобразование s1* s2# s3# s4*

sXX* = мультипликативная инверсия sXX по модулю 216 +1

sXX# = аддитивная инверсия sXX по модулю 216

Алгоритм RSA

Как бы ни бы­ли слож­ны и на­деж­ны крип­то­гра­фи­че­ские сис­те­мы - их сла­бое ме­сто при прак­ти­че­ской реа­ли­за­ции - про­блема рас­пре­де­ле­ния клю­чей . Для то­го что­бы был воз­мо­жен об­мен кон­фи­ден­ци­аль­ной ин­фор­ма­ци­ей ме­ж­ду дву­мя субъ­ек­та­ми ИС, ключ дол­жен быть сге­не­ри­ро­ван од­ним из них, а за­тем, в кон­фи­ден­ци­аль­ном по­ряд­ке, пе­ре­дан дру­го­му. Т.е. в об­щем слу­чае для пе­ре­да­чи клю­ча опять же тре­бу­ет­ся ис­поль­зо­ва­ние ка­кой-то крип­то­си­сте­мы.

Для ре­ше­ния этой про­бле­мы на ос­но­ве ре­зуль­та­тов, по­лу­чен­ных классической и со­вре­мен­ной ал­геб­рой, бы­ли пред­ло­же­ны сис­те­мы с от­кры­тым клю­чом.

Суть их со­сто­ит в том, что ка­ж­дым ад­ре­са­том ИС ге­не­ри­ру­ют­ся два клю­ча, свя­зан­ные ме­ж­ду со­бой по оп­ре­де­лен­но­му пра­ви­лу. Один ключ объ­яв­ля­ет­ся от­кры­тым , а дру­гой за­кры­тым . От­кры­тый ключ пуб­ли­ку­ет­ся и дос­ту­пен лю­бо­му, кто же­ла­ет по­слать со­об­ще­ние ад­ре­са­ту. Секретный ключ сохраняется в тайне.

Ис­ход­ный текст шиф­ру­ет­ся от­кры­тым клю­чом адресата и пе­ре­да­ет­ся ему. За­шиф­ро­ван­ный текст в прин­ци­пе не мо­жет быть рас­шиф­ро­ван тем же от­кры­тым клю­чом. Де­шиф­ро­ва­ние со­об­ще­ние воз­мож­но толь­ко с ис­поль­зо­ва­ни­ем за­кры­то­го клю­ча, ко­то­рый из­вес­тен толь­ко са­мо­му ад­ре­са­ту.


Асимметричные крип­то­гра­фи­че­ские сис­те­мы ис­поль­зу­ют так называемые не­об­ра­ти­мые или од­но­сто­рон­ние функ­ции , ко­то­рые об­ла­да­ют сле­дую­щим свой­ст­вом: при за­дан­ном зна­че­нии x от­но­си­тель­но про­сто вы­чис­лить зна­че­ние f(x), од­на­ко ес­ли y =f(x ), то нет про­сто­го пу­ти для вы­чис­ле­ния зна­че­ния x.

Ал­го­рит­мы шиф­ро­ва­ния с от­кры­тым клю­чом по­лу­чи­ли ши­ро­кое рас­про­стра­не­ние в со­вре­мен­ных ин­фор­ма­ци­он­ных сис­те­мах. Так, ал­го­ритм RSA стал ми­ро­вым стан­дар­том де-фак­то для от­кры­тых сис­тем.

Ал­го­рит­мы криптосистем с открытым ключом мож­но ис­поль­зо­вать в 3 на­зна­че­ни­ях.

1. Как са­мо­стоя­тель­ные сред­ст­ва за­щи­ты пе­ре­да­вае­мых и хра­ни­мых дан­ных.

2. Как сред­ст­ва для рас­пре­де­ле­ния клю­чей .

3. Сред­ст­ва ау­тен­ти­фи­ка­ции поль­зо­ва­те­лей .

Ал­го­рит­мы криптосистем с открытым ключом бо­лее тру­до­ем­ки, чем тра­ди­ци­он­ные крип­то­си­сте­мы, поэтому использование их в качестве са­мо­стоя­тель­ных сред­ст­в за­щи­ты нерационально.

По­это­му на прак­ти­ке ра­цио­наль­но с по­мо­щью криптосистем с открытым ключом рас­пре­де­лять клю­чи, объ­ем ко­то­рых как ин­фор­ма­ции не­зна­чи­те­лен. А по­том с по­мо­щью обыч­ных ал­го­рит­мов осу­ще­ст­в­лять об­мен боль­ши­ми ин­фор­ма­ци­он­ны­ми по­то­ка­ми.

Не­смот­ря на до­воль­но боль­шое чис­ло раз­лич­ных криптосистем с открытым ключом, наиболее популярна - криптосистема RSA, разработанная в 1977 году и по­лу­чив­шая на­зва­ние в честь ее соз­да­те­лей: Ривеста, Ша­ми­ра и Эй­дель­ма­на.

Ри­ве­ст, Ша­ми­р и Эй­дель­ма­н вос­поль­зо­ва­лись тем фак­том, что на­хо­ж­де­ние боль­ших про­стых чи­сел в вы­чис­ли­тель­ном от­но­ше­нии осу­ще­ст­в­ля­ет­ся лег­ко, но раз­ло­же­ние на мно­жи­те­ли про­из­ве­де­ния двух та­ких чи­сел прак­ти­че­ски не­вы­пол­ни­мо. До­ка­за­но (тео­ре­ма Ра­би­на), что рас­кры­тие шиф­ра RSA эк­ви­ва­лент­но та­ко­му раз­ло­же­нию. По­это­му для лю­бой дли­ны клю­ча мож­но дать ниж­нюю оцен­ку чис­ла опе­ра­ций для рас­кры­тия шиф­ра, а с уче­том про­из­во­ди­тель­но­сти со­вре­мен­ных ком­пь­ю­те­ров оце­нить и не­об­хо­ди­мое на это вре­мя.

Пустьn =p*q , где p и q - различные простые числа, и e и d удовлетворяют уравнению

e*d (mod (p -1)*(q -1))= 1

Если p и q - достаточно большие простые числа, то разложение n практически не осуществимо. Это и заложено в основу системы шифрования RSA.

{e,n} образует открытый ключ, а {d,n} - закрытый (можно взять и наоборот).

Открытый ключ публикуется и доступен каждому, кто же­ла­ет по­слать вла­дель­цу клю­ча со­об­ще­ние, ко­то­рое за­шиф­ро­вы­ва­ет­ся ука­зан­ным ал­го­рит­мом. По­сле шифрования, со­об­ще­ние не­воз­мож­но рас­крыть с по­мо­щью от­кры­то­го клю­ча. Вла­де­лец же за­кры­то­го клю­ча без тру­да мо­жет рас­шиф­ро­вать при­ня­тое со­об­ще­ние.

Шифрование осуществляется по формуле: Sшифр = Se mod N

Шифрование осуществляется по формуле: S = Sd шифр mod N

Где S – исходный текст, Sшифр – преобразованный текст, при этом S < N

Оценка надежности криптосистем

Группа известных специалистов-криптографов, созданная под эгидой Альянса производителей программного обеспечения для бизнеса (промышленной организации, препятствующей незаконному использованию программного обеспечения), пришла к выводу, что необходимая длина ключа в настоящее время должна быть не менее 75 битов с дальнейшим увеличением в течение последующих 20 лет до 90 битов. Проверим данное утверждение.

Проблема поиска ключей симметричной криптосистемы путем перебора всех возможных ключей относится к классу задач, допускающих распараллеливание. Применение распределенных вычислений для организации перебора таких ключей позволяет эффективно решать трудоемкие задачи в этой области. Экспоненциальная динамика роста с течением времени производительности вычислительных систем (10 раз за 5 лет) оказывает еще более существенное влияние на рост производительности системы в целом. Таким образом, прогресс в этой области возможен за счет:

1) использования достижений научно-технического прогресса и применения технологических новинок для увеличения производительности отдельного устройства;

2) увеличения количества таких устройств в системе.

C физической точки зрения тот тип транзистора, который является основой современной интегральной схемы, может быть уменьшен еще примерно в 10 раз, до размера 0,03 мк. За этой гранью процесс включения/выключения микроскопических переключателей станет практически невозможным. Таким образом максимальное быстродействие составит - 1016 операций/секунду, а предел роста наступит приблизительно в 2030 г.

К-во Просмотров: 311
Бесплатно скачать Реферат: Современные криптографические методы