Реферат: Современные методы обеззараживания питьевой воды

Ограничениями для распространения технологии озонирования являются высокая стоимость оборудования, большой расход электроэнергии, значительные производственные расходы, а также необходимость высококвалифицированного оборудования. Последний факт обусловил использование озона лишь при централизованном водоснабжении. Кроме того, в процессе эксплуатации установлено, что в ряде случаев (если температура обрабатываемой природной воды превышает 22 °С) озонирование не позволяет достичь требуемых микробиологических показателей по причине отсутствия эффекта пролонгации дезинфицирующего воздействия

Метод озонирования воды технически сложен и наиболее дорогостоящ среди других методов обеззараживания питьевой воды.. Технологический процесс включает последовательные стадии очистки воздуха, его охлаждения и осушки, синтеза озона, смешения озоновоздушной смеси с обрабатываемой водой, отвода и деструкции остаточной озоновоздушной смеси, вывода ее в атмосферу. Все это ограничивает использование данного метода в повседневной жизни.

Другим существенным недостатком озонирования явялется токсичность озона. Предельно допустимое содержание этого газа в воздухе производственных помещений - 0,1 г/м3. К тому же существует опасность взрыва озоновоздушной смеси.

Существующие конструкции современных озонаторов представляют собой большое количество близко расположенных ячеек, образованных электродами, один из которых находится под высоким напряжением, а второй – заземлен. Между электродами с определенной периодичностью возникает электрический разряд, в результате которого в зоне действия ячеек из воздуха образуется озон. Полученной озоновоздушной смесью барботируют обрабатываемую воду. Подготовленная таким образом вода по вкусу, запаху и другим свойствам превосходит воду, обработанную хлором.

2.3 Другие реагентные способы дезинфекции воды

Применение тяжелых металлов (медь, серебро и др.) для обеззараживания питьевой воды основано на использовании их «олигодинамического» свойства – способности оказывать бактерицидное действие в малых концентрациях. Эти металлы могут вводиться в виде растворов солей либо методом электрохимического растворения. В обоих этих случаях возможен косвенный контроль их содержания в воде. Следует заметить, что ПДК ионов серебра и меди в питьевой воде достаточно жесткие, а требования к воде, сбрасываемой в рыбохозяйственные водоемы, еще выше.

К химическим способам обеззараживания питьевой воды относится также широко применявшееся в начале 20 в. обеззараживание соединениями брома и йода, обладающими более выраженными бактерицидными свойствами, чем хлор, но требующими и более сложной технологии. В современной практике для обеззараживания питьевой воды йодированием предлагается использовать специальные иониты, насыщенные йодом. При пропускании через них воды йод постепенно вымывается из ионита, обеспечивая необходимую дозу в воде. Такое решение приемлемо для малогабаритных индивидуальных установок. Существенным недостатком является изменение концентрации йода во время работы и отсутствие постоянного контроля его концентрации.

Применение активных углей и катионитов, насыщенных серебром, например, С-100 Ag или С-150 Ag фирмы « Purolite », преследует цели не «серебрения» воды, а предотвращения развития микроорганизмов при прекращении движения воды. При остановках создаются идеальные условиях для их размножения – большое количество органики, задержанное на поверхности частиц, их огромная площадь и повышенная температура. Наличие серебра в структуре этих частиц резко уменьшает вероятность обсеменения слоя загрузки. Серебросодержащие катиониты разработки ОАО НИИПМ – КУ-23СМ и КУ-23СП – содержат в себе значительно большее количество серебра и предназначены для обеззараживания воды в установках небольшой производительности.


3.1 Кипячение

Из физических способов обеззараживания воды наиболее распространенным и надежным (в частности, в домашних условиях) является кипячение.

При кипячении происходит уничтожение большинства бактерий, вирусов, бактериофагов, антибиотиков и других биологических объектов, которые часто содержатся в открытых водоисточниках, а как следствие и в системах центрального водоснабжения.

Кроме того, при кипячении воды удаляются растворенные в ней газы и уменьшается жесткость. Вкусовые качества воды при кипячении меняются мало. Правда для надежной дезинфекции рекомендуется кипятить воду в течение 15 - 20 минут, т.к. при кратковременном кипячении некоторые микроорганизмы, их споры, яйца гельминтов могут сохранить жизнеспособность (особенно если микроорганизмы адсорбированы на твердых частицах). Однако применение кипячения в промышленных масштабах, конечно же, не представляется возможным ввиду высокой стоимости метода.

3.2 Ультрафиолетовое излучение

Обработка УФ-излучением – перспективный промышленный способ дезинфекции воды. При этом применяется свет с длиной волны 254 нм (или близкой к ней), который называют бактерицидным. Дезинфицирующие свойства такого света обусловлены их действием на клеточный обмен и особенно на ферментные системы бактериальной клетки. При этом бактерицидный свет уничтожает не только вегетативные, но и споровые формы бактерий.

Современные установки УФ-обеззараживания имеют производительность от 1 до 50 000 м3/ч и представляют собой выполненную из нержавеющей стали камеру с размещенными внутри УФ-лампами, защищенными от контакта с водой прозрачными кварцевыми чехлами. Вода, проходя через камеру обеззараживания, непрерывно подвергается облучению ультрафиолетом, который убивает все находящиеся в ней микроорганизмы. Наибольший эффект обеззараживания питьевой воды достигается при расположении УФ-установок после всех других систем очистки, как можно ближе к месту конечного потребления.

Этот способ приемлем как в качестве альтернативы, так и дополнения к традиционным средствам дезинфекции, поскольку абсолютно безопасен и эффективен.

Важно отметить, что в отличие от окислительных способов при УФ-облучении не образуются вторичные токсины, и поэтому верхнего порога дозы ультрафиолетового облучения не существует. Увеличением дозы почти всегда можно добиться желаемого уровня обеззараживания.

Кроме того УФ-облучение не ухудшает органолептические свойства воды, поэтому может быть отнесено к экологически чистым методам ее обработки.

Вместе с тем, и этот способ имеет определенные недостатки. Подобно озонированию, УФ-обработка не обеспечивает пролонгированного действия. Именно отсутствие последействия делает проблематичным ее применение в случаях, когда временной интервал между воздействием на воду и ее потреблением достаточно велик, например в случае централизованного водоснабжения. Для индивидуального водоснабжения УФ-установки являются наиболее привлекательными.

Кроме того, возможны реактивация микроорганизмов и даже выработка новых штаммов, устойчивых к лучевому поражению.

Этот способ требует строжайшего соблюдения технологии,

Организация процесса УФ-обеззараживания требует больших капитальных вложений, чем хлорирование, но меньших, чем озонирование. Более низкие эксплуатационные расходы делают УФ-обеззараживание и хлорирование сопоставимыми в экономическом плане. Расход электроэнергии незначителен, а стоимость ежегодной замены ламп составляет не более 10% от цены установки.

Фактором, снижающим эффективность работы установок УФ-обеззараживания при длительной эксплуатации, является загрязнение кварцевых чехлов ламп отложениями органического и минерального состава. Крупные установки снабжаются автоматической системой очистки, осуществляющей промывку путем циркуляции через установку воды с добавлением пищевых кислот. В остальных случаях применяется механическая очистка.

Другим фактором, снижающим эффективность УФ-обеззараживания, является мутность исходной воды. Рассеивание лучей значительно ухудшает эффективность обработки воды.

3.3 Электроимпульсный способ

Достаточно новым способом обеззараживания воды является электроимпульсный способ - использование импульсивных электрических разрядов (ИЭР).

Сущность метода заключается в возникновении электрогидравлического удара, так называемого эффекта Л. А. Юткина.

Технологический процесс состоит из шести ступеней:

подача жидкости в рабочий объём при равномерном профиле распределения скорости (причём рабочий объём заполняют с воздушным промежутком, а равномерный профиль распределения жидкости помогает уменьшить энергоёмкость процесса),

зарядку накопителя электроэнергии в режиме постоянной мощности,

инициирование одного или серии электрических разрядов в жидкости при скорости нарастания переднего фронта напряжения не менее 1010 В/с (энергию дозируют путём отсчёта зарядов),

усиление эффекта разрушения микроорганизмов за счет формирования волн растяжения при отражении волн сжатия, образованных электрическим разрядом от свободной поверхности жидкости,

подавление или гашение ударных волн в подводящих и отводящих жидкость магистралях для исключения их разрушения,

К-во Просмотров: 1939
Бесплатно скачать Реферат: Современные методы обеззараживания питьевой воды