Реферат: Современные научные картины мира

Необходимо подчеркнуть, что именно в отношении опреде­ленных пространственных координат изменяются отрезки длин и промежутки времени. Наблюдатель, находящийся внутри ва­гона, по своим часам, скажем, ждет полчаса. А по часам на­блюдателя на платформе проходит значительно больше време­ни. Если, например, длина космического корабля в полете уменьшается в два раза с точки зрения наблюдателя на Земле, то при возвращении на Землю корабль сбавляет скорость и его длина становится такой, как и была при отлете.

Время же необратимо. Отсюда известный парадокс близне­цов. После путешествия одного из близнецов на ракете, летев­шей близко к скорости света, он с удивлением увидит, что его брат стал старше его. Можно даже рассчитать такой полет.

Представим себе, что с Земли стартовал космический ко­рабль со скоростью 0,99 или 0,98 скорости света и вернулся об­ратно через 50 лет, прошедших на Земле. Но согласно теории относительности по часам корабля этот полет продолжался бы всего лишь год. Если космонавт, отправившись в полет в возрасте 25 лет, оставил на Земле только что родившегося сына, то при встрече 50-летний сын будет приветствовать 26-летнего отца.

Физиологические процессы здесь совершенно ни при чем. Нельзя спрашивать, почему за один год сын космонавта соста­рился на 50 лет. Теория относительности доказала, что не сущест­вует ни абсолютного времени, ни абсолютного пространства. Сын постарел на 50 лет за годы, прожитые на Земле, в системе отсчета корабля время по отношению к земле другое'.

Релятивистское замедление является экспериментальным фактом. В космических лучах в верхних слоях атмосферы обра­зуются частицы, называемые пи-мезонами, или пионами. Соб­ственное время жизни пионов — 10"8 с. За это время, двигаясь даже со скоростью, почти равной скорости света, они могут пройти не больше чем 300 см. Но приборы их регистрируют. Они проходят путь, равный 30 км, или в 10 000 раз больше, чем для них возможно. Теория относительности так объясняет этот факт: 10~8 с является естественным временем жизни мезона, измеренным по часам, движущимся вместе с мезоном, т. е. по­коящимся по отношению к нему. Но в системе отсчета Земли время жизни мезона намного больше, и за это время пионы в состоянии пройти земную атмосферу.

Говоря об относительности пространственных и временных величин в разных системах отсчета, следует помнить, что в теории относительности мы наблюдаем неразрывную связь от­носительного и абсолютного как одно из проявлений физиче­ской симметрии. Поскольку скорость света является абсолют­ной величиной, то и связь пространства и времени обнаружи­вается как некоторая абсолютная величина. Она выражается в так называемом пространственно-временном интервале по форму­ле . В каждой системе отсчета длина тела и вре­менной промежуток будут различны, а эта величина останется неизменной. Увеличение длины будет соответствовать умень­шение промежутка времени в данной системе, и наоборот.

В общей теории относительности (ОТО), или теории тяготе­ния, Эйнштейн расширяет принцип относительности, распро­страняя его на неинерциальные системы. В ней он также исхо­дит из экспериментального факта эквивалентности масс инер­ционных и гравитационных, или эквивалентности инерцион­ных и гравитационных полей.

Правда, принцип эквивалентности справедлив только при строго локальных наблюдениях. Так, представим себе лифт, стоящий на Земле. Наблюдатель в лифте бросает два шара. Они будут двигаться по направлению к центру Земли и, следова­тельно, друг к другу. Если же мы будем тянуть лифт с ускоре­нием § в пустоте, то те же шары будут двигаться параллельно друг другу (см. рис. 2).

Рис. 2.


Но несмотря на это ограничение, принцип эквивалентности играет важную роль в науке. Мы всегда можем вычислить непо­средственно действие сил инерции на любую физическую систему, и это дает нам возможность знать действие поля тяготения, отвлека­ясь от его неоднородности, которая часто очень незначительна.

Расширение принципа относительности на неинсрциальные «.'истемы, казалось бы, противоречит нашему обыденному опы­ту. Находясь внутри инерциальной системы, никаким экспери­ментом нельзя определить, движется она или покоится. Те, кто летал в самолете, знают, что в нем, как и на Земле, можно де­лать вес: пить чай, играть в мячик и т. п. Даже если посмотреть в иллюминатор, то увидишь, что самолет как бы висит непод­вижно над облаками. Однако, когда самолет начинает сбавлять скорость и идет на посадку, пассажиры сразу же это замечают.

Эйнштейн предлагает провести мысленный эксперимент с лифтом, подвешенным над Землей. Наблюдатели, находящиеся внутри него, не смогут определить в некоторых ситуациях, на­ходятся они в покое или в движении. Представим себе, что в какой-то момент времени канат, на котором подвешен лифт, обрывается, и наблюдатели в нем оказываются в состоянии свободного падения. В этом случае они не смогут определить, какое из двух противоположных утверждений будет истинным: 1) лифт движется в поле тяготения Земли; 2) лифт покоится в отсутствии поля тяготения. Если же в отсутствие поля тяготе­ния Земли лифт будут тянуть вверх с ускорением §, то наблюдатели также не смогут выбрать истинное утверждение из двух противоположных: 1) лифт покоится в поле тяготения Земли; 2) лифт движется с ускорением в отсутствие поля тяготения.

Какие же следствия для пространства и времени вытекают из общей теории относительности? Для этого нужно обратиться вначале к геометрии, которая возникла прежде всего как уче­ние о физическом пространстве, измерении земельных площа­дей и строительных сооружений. Но уже в древности появилась теоретическая, аксиоматическая геометрия Евклида, которая оставалась единственной до XIX в. Правда, до конца XIX в. не делалось какого-либо различия между теоретической и физической геометрией.

С геометрией Евклида связывался тот взгляд, что простран­ство везде одно и то же. Она исходила из пяти аксиом или по­стулатов. Многих математиков не удовлетворял пятый постулат, который гласил, что из одной точки на плоскости можно про­несли только одну прямую, которая не будет пересекаться с джнип, сколько бы ее ни продолжали. Этот постулат не был очевиден, так как никто не мог бы его экспериментально под­твердить даже в воображении — нельзя же линию продолжать в бесконечность.

Ряд известных математиков пытались доказать, что этот по­стулат на самом деле является теоремой, т. е. его можно вывес­ти из четырех других. Но все их попытки оказались неудачны­ми. Они так или иначе неявно предполагали тот же самый пя­тый постулат. Например, в той форме, что сумма углов тре­угольника равна двум прямым. Великий математик К. Гаусс первый поставил под сомнение возможность такого доказатель­ства, т. е. признал, что постулат является аксиомой и, следова­тельно, его можно заменить другими аксиомами, построив но­вую геометрию. Но он на это не осмелился.

И лишь Н.И. Лобачевский в России, Б. Риман в Германии и Я. Больяй в Венгрии построили новые геометрии, отбросив пятый постулат и заменив его на другие. Б. Риман заменил его на аксиому, что через точку, лежащую вне данной прямой на плоскости, нельзя провести ни одной параллельной, все они будут пересекаться с данной. Н.И. Лобачевский и Я. Больяй до­пустили, что существует множество прямых, которые не пере­секутся с данной.

Для пояснения отличия этих геометрий возьмем простран­ство двух измерений, поверхность. Евклидова геометрия реали­зуется на плоскости, Римана — на поверхности сферы, на ко­торой прямая линия выглядит как отрезок дуги большого круга, центр которого совпадает с центром сферы. Геометрия Лоба­чевского осуществляется на так называемой псевдосфере. Так как пространство имеет три измерения, то для каждой геомет­рии вводится понятие кривизны пространства. В евклидовой геометрии кривизна нулевая, у Римана — положительная, у Ло­бачевского—Больяя — отрицательная.

Поскольку постулат параллельности эквивалентен положе­нию о сумме углов треугольника, то различие этих геометрий наглядно изображается на рисунке. В геометрии Евклида сумма углов треугольника равна 180°, у Римана — она больше, у Лоба­чевского — меньше. (Рис. 3, а, б, в соответственно).

Рис. 3.


Под кривизной пространства не нужно понимать искривле­ние плоскости наподобие того, как искривлена поверхность евклидовой сферы, где внешняя поверхность отлична от внут­ренней. Изнутри ее поверхность выгладит вогнутой, извне — вы­пуклой. Если же брать плоскость в пространстве Лобачевского или Римана, обе ее стороны являются совершенно одинаковыми. Про­сто внутренняя структура плоскости такова, что мы измеряем ее с помощью некоторого коэффициента "кривизны". Кривизна пространства понимается в науке как отступление его метрики от евклидовой, что точно описывается в языке математики, но не проявляется каким-то наглядным образом.

Риман впоследствии показал единство и непротиворечи­вость всех неевклидовых геометрий, частным случаем которых является геометрия Евклида.

Создатели геометрий Лобачевский и Риман считали, что только физические эксперименты могут показать нам, какова геометрия нашего мира. Эйнштейн в общей теории относи­тельности сделал геометрию физической экспериментальной наукой, которая подтвердила характер пространства Римана. Здесь опять призовем на помощь мысленный эксперимент. Представим себе, что лифт покоится в отсутствие гравитацион­ного поля (см. рис. 4, а). В стене лифта сделано отверстие А, через которое луч света падает на его противоположную сторо­ну. Линия АВ — прямая. Пусть теперь лифт начинает движение вверх с ускорением §, т. е. 9,8 м/с2. За время, пока свет прохо­дит расстояние между стенками, лифт смещается вверх, и луч света попадает уже не в точку В, а в точку С (см. рис. 4, б).

Рис. 4.


Линия АС сохраняет свойство быть кратчайшим расстояни­ем между двумя точками, но это будет уже не прямая, а пря­мейшая или геодезическая. На Земле, поверхность которой представляет собой сферу, такие линии и называются геодези­ческими. Общая теория относительности заменяет закон тяго­тения Ньютона новым уравнением тяготения. Закон Ньютона получается как предельный случай эйнштейновских уравнений. Рассчитанное теоретически Эйнштейном отклонение луча света было впоследствии экспериментально подтверждено наблюде­ниями во время солнечного затмения, когда луч света от звезды проходит вблизи поля тяготения Солнца.

В общей теории относительности Эйнштейн доказал, что структура пространства—времени определяется распределением масс материи. Когда корреспондент американской газеты "Нью-Йорк Тайме" спросил Эйнштейна в апреле 1921 г., в чем суть теории относительности, он ответил: "Сугь такова: раньше считали, что если каким-нибудь чудом все материальные вещи исчезли бы вдруг, то пространство и время остались бы. Со­гласно же теории относительности вместе с вещами исчезли бы и пространство, и время".


1.3. Свойства пространства и времени

К-во Просмотров: 386
Бесплатно скачать Реферат: Современные научные картины мира