Реферат: Современные представления о мегамире
Огромное практическое значение науки в XX в. сделало ее той областью знания, к которой массовое сознание испытывает глубокое уважение. Слово науки весомо, и оттого рисуемая ею картина Вселенной часто принимается за точную фотографию реальной действительности, как она есть на самом деле, независимо от нас. Ведь наука и претендует на эту роль - бесстрастного и точного зеркала, отражающего мир в строгих понятиях и стройных математических вычислениях. Однако за привычным, коренящимся еще в эпохе Просвещения доверием к выводам науки, часто забывается, что она - развивающаяся и подвижная система знаний, что способы видения, присущие ей, изменчивы. А это означает, что сегодняшняя картина Вселенной не равна вчерашней. Повседневное сознание все еще живет научной картиной прошлых лет и веков, а сама наука уже убежала далеко вперед и рисует порой вещи столь парадоксальные, что сама ее объективность и беспристрастность начинает казаться мифом.
Современная астрофизика вплотную подошла к изучению ряда природных процессов, которые не имеют пока удовлетворительного объяснения в рамках существующих знаний и понимание которых, по всей вероятности, потребует выхода за границы фундаментальных общепринятых теорий. Речь идет, в частности, о таких проблемах, как природа колоссальных космических энергий, мощных физических процессов, протекающих в ядрах галактик и квазарах, поведение материи в условиях сверхвысокой плотности, взаимосвязь процессов микро - и мегамира, свойства вакуума и некоторые другие. Однако наука, безусловно, успешно решит эти вопросы, открыв новые природные закономерности, не имеющие ничего общего с потусторонними силами.[1]
Из всего сказанного выше можно сделать следующие выводы: во-первых, в связи с тем, что науки о Вселенной в настоящее время переживают период необычайно быстрого развития, принципиальные открытия в этой области, требующие кардинального пересмотра привычных представлений, следуют одно за другим.
1. Современные науки о мегамире
1.1. Астрономия как наука.
Звезды изучает астрономия - наука о строении и развитии космических тел и их систем.[2] Эта классическая наука переживает в XX в. свою вторую молодость в связи с бурным развитием техники наблюдений - основного своего метода исследований: телескопов-рефлекторов, приемников излучения (антенн) и т.п. В СССР в 1974 г. вступил в действие в Ставропольском крае рефлектор с диаметром зеркала 6 м, собирающий света в миллионы раз больше, чем человеческий глаз.
В астрономии исследуются радиоволны, свет, инфракрасное, ультрафиолетовое, рентгеновское излучение и гамма-лучи. Астрономия делится на небесную механику, радиоастрономию, астрофизику и другие дисциплины.
Особое значение приобретает в настоящее время астрофизика - часть астрономии, изучающая физические и химические явления, происходящие в небесных телах, их системах и в космическом пространстве. В отличие от физики, в основе которой лежит эксперимент, астрофизика основывается главным образом на наблюдениях. Но во многих случаях условия, в которых находится вещество в небесных телах и системах отличается от доступных современным лабораториям. Благодаря этому астрофизические исследования приводят к открытию новых физических закономерностей.
Собственное значение астрофизики определяется тем, что в настоящее время основное внимание в релятивистской космологии переносится на физику Вселенной - состояние вещества и физические процессы, идущие на разных стадиях расширения Вселенной, включая наиболее ранние стадии.
Один из основных методов астрономии - спектральный анализ. Если пропустить луч белого солнечного света через узкую щель, а затем сквозь стеклянную трехгранную призму, он распадается на составляющие цвета и на экране появится радужная цветовая полоска с постепенным переходом от красного к фиолетовому - непрерывный спектр. Красный конец спектра образован лучами, наименее отклоняющимися при прохождении через призму, фиолетовый - наиболее отклоняемыми. Каждому химическому элементу соответствуют вполне определенные спектральные линии, что и позволяет использовать данный метод для изучения веществ.
К сожалению, коротковолновые излучения - ультрафиолетовые, рентгеновские и гамма-лучи - не проходят сквозь атмосферу Земли, и здесь на помощь астрономам приходит наука, которая до недавнего времени рассматривалась как, прежде всего техническая - космонавтика, обеспечивающая освоение космоса для нужд человечества с использованием летательных аппаратов.
1.2. Космология как учение о вселенной
Вселенную в целом изучает космология (т.е. наука о Космосе). Слово это тоже не случайно. Хотя сейчас космосом называют все, находящееся за пределами атмосферы Земли, не так было в Древней Греции. Космос тогда принимался как «порядок», «гармония», в противоположность хаосу - «беспорядку». Таким образом, десмология, в основе своей, как и подобает науке, открывает упорядоченность нашего мира и нацелена на поиск законов его функционирования. Открытие этих законов и представляет собой цель изучения Вселенной как единого упорядоченного целого.
Это изучение зиждется на нескольких предпосылках. Во-первых, формулируемые физикой универсальные законы функционирования мира считаются действующими во всей Вселенной.[3] Во-вторых, производимые астрономами наблюдения тоже признаются распространимыми на всю Вселенную. И, в-третьих, истинными признаются только те выводы, которые не противоречат возможности существования самого наблюдателя, т.е. человека.
Выводы космологии называются моделями происхождения и развития Вселенной. Дело в том, что одним из основных принципов современного естествознания является представление о возможности проведения в любое время управляемого и воспроизводимого эксперимента над изучаемым объектом. Только если можно провести бесконечное в принципе количество экспериментов, и все они приводят к одному результату, на основе этих экспериментов делают заключение о наличии закона, которому подчиняется функционирование данного объекта. Лишь в этом случае результат считается вполне достоверным с научной точки зрения.
Принято считать, что основные положения современной космологии - науки о строении и эволюции Вселенной - начали формироваться после создания в 1917 г. А. Эйнштейном первой релятивистской модели, основанной на теории гравитации и претендовавшей на описание всей Вселенной. Данная модель характеризовала статическую Вселенную и, как показали астрофизические наблюдения, оказалась неверной.
1.3. Теория относительности и космология.
Вселенная могла образоваться из «ничего», т.е. из «возбужденного вакуума». Такая гипотеза, конечно, не является решающим подтверждением существования Бога. Ведь все это могло произойти в соответствии с законами физики естественным путем без вмешательства извне каких-либо идеальных сущностей. И в этом случае научные гипотезы не подтверждают и не опровергают религиозные догмы, которые лежат по ту сторону эмпирически подтверждаемого и опровергаемого естествознания.
На этом удивительное в современной физике не кончается. Отвечая на просьбу журналиста изложить суть теории относительности в одной фразе, Эйнштейн сказал: «Раньше полагали, что если бы из Вселенной исчезла вся материя, то пространство и время сохранились бы; теория относительности утверждает, что вместе с материей исчезли бы также пространство и время».[4] Перенеся этот вывод на модель расширяющейся Вселенной, можно заключить, что до образования Вселенной не было ни пространства, ни времени.
Отметим, что теория относительности соответствует двум разновидностям модели расширяющейся Вселенной. В первой из них кривизна пространства-времени отрицательна или в пределе равна нулю; в этом варианте все расстояния со временем неограниченно возрастают. Во второй разновидности модели кривизна положительна, пространство конечно, и в этом случае расширение со временем заменяется сжатием. В обоих вариантах теория относительности согласуется с нынешним эмпирически подтвержденным расширением Вселенной.
Досужий ум неизбежно задается вопросами: что же было тогда, когда не было ничего и что находится за пределами расширения? Первый вопрос очевидно противоречив сам по себе, второй выходит за рамки конкретной науки. Астроном может сказать, что как ученый он не вправе отвечать на такие вопросы. Но поскольку они все же возникают, формулируются и возможные обоснования ответов, которые являются не столько научными, сколько натурфилософскими.
Так, проводится различие между терминами «бесконечный» и «безграничный». Примером бесконечности, которая не безгранична, служит поверхность Земли: мы можем идти по ней бесконечно долго, но, тем не менее, она ограничена атмосферой сверху и земной корой снизу. Вселенная также может быть бесконечной, но ограниченной. С другой стороны, известна точка зрения, в соответствии с которой в материальном мире не может быть ничего бесконечного, потому что он развивается в виде конечных систем с петлями обратной связи, которыми эти системы создаются в процессе преобразования среды.
2. Вселенная как система объектов
2.1. Общая характеристика Вселенной.
Вселенная представляет собой самую крупную вещественную систему, т. е. систему объектов, состоящих из вещества. Иногда понятие «вещество» отождествляют с понятием «материя». Такое отождествление может привести к ошибочным заключениям. Материя - понятие самое общее, в то время как вещество - это лишь одна из форм ее существования. В современном представлении различают три взаимосвязанных формы материи: вещество, поле и физический вакуум. Вещество состоит из дискретных частиц, проявляющих волновые свойства. Для микрочастиц характерна двойственная корпускулярно-волновая природа. Физический вакуум, его свойства пока познаны намного хуже многих вещественных систем и структур. По современному определению, физический вакуум - это нулевые флуктуирующие поля, с которыми связаны виртуальные частицы. Физический вакуум обнаруживается при взаимодействии с веществом на его глубинных уровнях. Предполагается, что вакуум и вещество неразделимы и ни одна вещественная частица не может быть изолирована от его присутствия и влияния. В соответствии с концепцией самоорганизации физический вакуум выступает в роли внешней среды для Вселенной.
Значение термина «Вселенная» уже и приобрело специфически научное звучание.[5] Вселенная - место вселения человека, доступное эмпирическому наблюдению. Постепенное сужение научного значения термина «Вселенная» вполне понятно, так как естествознание, в отличие от философии, имеет дело только с тем, что эмпирически проверяемо современными научными методами.
К Вселенной это методологическое правило остается неприменимым. Наука формулирует универсальные законы, а Вселенная уникальна. Это противоречие, которое требует считать все заключения о происхождении и развитии Вселенной не законами, а лишь моделями, т.е. возможными вариантами объяснения. Строго говоря, все законы и научные теории являются моделями, поскольку они могут быть заменены в процессе развития науки другими концепциями, но модели Вселенной как бы в большей степени модели, чем многие иные научные утверждения.
2.2. Понятия галактики, метагалактики.
Мы знаем, что наше Солнце дает необходимую для нашего существования энергию. Галактики, и Солнце не только обеспечивает нас энергией. Астрономические наблюдения показывают, что из ядер галактик происходит непрерывное истечение водорода. Таким образом, ядра галактик являются фабриками по производству основного строительного материала Вселенной - водорода
Водород, атом которого состоит из одного протона в ядре и одного электрона на его орбите, является самым простым «кирпичиком», из которого в недрах звезд образуются в процессе атомных реакций более сложные атомы. Причем оказывается, что звезды совершенно не случайно имеют различную величину. Чем больше масса звезды, тем более сложные атомы синтезируются в ее недрах.
Наше Солнце как обычная звезда «производит» только гелий из водорода, очень массивные звезды «производят» углерод - главный «кирпичик» живого вещества.[6] Вот для чего нужны галактики и звезды. А для чего нужна Земля? Она производит все необходимые вещества для поддержания жизни человека. А для чего существует человек? На этот вопрос не может ответить наука, но она может заставить нас еще раз задуматься над ним.
Если «зажигание» звезд кому-то нужно, то может и человек кому-то нужен? Научные данные помогают нам сформулировать представление о нашем предназначении, о смысле нашей жизни. Обращаться при ответе на эти вопросы к эволюции Вселенной - это, значит, мыслить космически. Естествознание учит мыслить космически, в то же время, не отрываясь от реальности нашего бытия.
Вопрос об образовании и строении галактик - следующий важный вопрос происхождения Вселенной. Его изучает не только космология как наука о Вселенной - едином целом, но также и космогония - область науки, в которой изучается происхождение и развитие космических тел и их систем.
Галактика представляет собой гигантские скопления звезд и их систем, имеющие свой центр и различную, не только сферическую, но часто спиралевидную, эллиптическую, сплюснутую или вообще неправильную форму. Галактик миллиарды и в каждой из них насчитываются миллиарды звезд.
Наша галактика называется Млечный Путь и состоит из 150 млрд. звезд.[7] Она состоит из ядра и нескольких спиральных ветвей. Ее размеры - 100 тыс. световых лет. Большая часть звезд нашей галактики сосредоточена в гигантском «диске» толщиной около 1500 световых лет. На расстоянии около 30 тыс. световых лет от центра галактики расположено Солнце.
Ближайшая к нашей галактике - «туманность Андромеды». Она названа так потому, что именно в созвездии Андромеды в 1917г. был открыт первый внегалактический объект. Его принадлежность к другой галактике была доказана в 1923 г. Э. Хабблом, нашедшим путем спектрального анализа в этом объекте звезды. Позже были обнаружены звезды и в других туманностях.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--