Реферат: Современные строительные материалы для отделки фасадов

При длительной работе экструдера возможен перегрев цилиндра под воронкой бункера и самого бункера. В этом случае гранулы начнут слипаться и прекратится их подача на шнек. Для предотвращения перегрева этой части цилиндра в нем делаются полости для циркуляции охлаждающей воды (см. рис. 1, поз. 4).

Зона питания (I). Поступающие из бункера гранулы заполняют межвитковое пространство шнека зоны I и уплотняются. Уплотнение и сжатие гранул в зоне I происходит, как правило, за счет уменьшения глубины нарезки h шнека. Продвижение гранул осуществляется вследствие разности значений силы трения полимера о внутреннюю поверхность корпуса цилиндра и о поверхность шнека. Поскольку поверхность контакта полимера с поверхностью шнека больше, чем с поверхностью цилиндра, необходимо уменьшить коэффициент трения полимера о шнек, так как в противном случае материал перестанет двигаться вдоль оси шнека, а начнет вращаться вместе с ним. Это достигается повышением температуры стенки цилиндра (нагревом) и понижением температуры шнека (шнек охлаждается изнутри водой).

Нагрев полимера в зоне I происходит за счет диссипативного тепла, выделяющегося при трении материала и за счет дополнительного тепла от нагревателей, расположенных по периметру цилиндра.

Иногда количество диссипативного тепла может быть достаточным для плавления полимера, и тогда нагреватели отключают. На практике такое происходит редко.

При оптимальной температуре процесса полимер спрессован, уплотнен и образует в межвитковом пространстве твердую пробку (см. рис. 2). Лучше всего, если такая скользящая пробка образуется и сохраняется на границе зон I и II. Свойства пробки во многом определяют производительность машины, стабильность транспортировки полимера, величину максимального давления и т. д.

Рис. 2. Схема плавления пробки материала в зоне II в межвитковом сечении шнека: 1- стенки цилиндра; 2- гребень шнека; 3- потоки расплава полимера; 4- спрессованный твердый полимер (пробка) в экструдере.

Зона пластикации и плавления (II). В начале зоны II происходит подплавление полимера, примыкающего к поверхности цилиндра. Расплав постепенно накапливается и воздействует на убывающую по ширине пробку. Поскольку глубина нарезки шнека уменьшается по мере продвижения материала от зоны I к зоне III, то возникающее давление заставляет пробку плотно прижиматься к горячей стенке цилиндра, происходит плавление полимера.

В зоне пластикации пробка плавится также и под действием тепла, выделяющегося вследствие внутреннего, вязкого трения в материале в тонком слое расплава (поз. 3 на рис. 2), где происходят интенсивные сдвиговые деформации. Последнее обстоятельство приводит к выраженному смесительному эффекту. Расплав интенсивно гомогенизируется, а составляющие композиционного материала перемешиваются.

Конец зоны II характеризуется распадом пробки на отдельные фрагменты. Далее расплав полимера с остатками твердых частиц попадает в зону дозирования.

Основной подъем давления P расплава происходит на границе зон I и II. На этой границе образующаяся пробка из спрессованного материала как бы скользит по шнеку: в зоне I это твердый материал, в зоне II- плавящийся. Наличие этой пробки и создает основной вклад в повышение давления расплава. Также увеличение давления происходит за счет уменьшения глубины нарезки шнека. Запасенное на выходе из цилиндра давление расходуется на преодоление сопротивления сеток, течения расплава в каналах головки и формования изделия.

Зона дозирования (III). Продвижение гетерогенного материала (расплав, частички твердого полимера) продолжает сопровождаться выделением внутреннего тепла, которое является результатом интенсивных сдвиговых деформаций в полимере. Расплавленная масса продолжает гомогенизироваться, что проявляется в окончательном плавлении остатков твердого полимера, усреднении вязкости и температуры расплавленной части.

Сразу же после выхода панели из экструдера её поверхность дополнительно обрабатывается - её придается определенная фактура, имитирующая тот или иной сорт дерева.

Затем обрезаются кромки панели и в её верхней части прошиваются необходимые для крепления к обшиваемой панелями стене отверстия.

Моноэкструзия

При моноэкструзии панель формируется из массы однородного состава. Эта технология проще и дешевле.

Данный технологический процесс производства сайдинга осуществляется при помощи экструдеров, принцип действия которых состоит в следующем - в подогреваемом цилиндре вращается один или несколько шнеков и непрерывно подает в фильеру смесь (расплавленный компаунд, состоящий из винилового порошка (пудры) и необходимых присадок), которая становится все более пластичной за счет увеличения подогрева.

Затем профили охлаждаются в вакуумных калибраторах, где им придается окончательная форма и качество поверхности.

Утверждается, что моноэкструзионный метод постепенно уходит в прошлое (из-за неэффективного использования дорогостоящих компонентов), а продукты вторичной переработки постепенно перестают пользоваться спросом из-за снижения себестоимости качественных материалов.

Но есть и прямо противоположное мнение. Оно утверждает, что только моноэксторузионный метод позволяет получить качественный сайдинг, а коэкструзия и придумана только для того, чтобы в составе компаунда для внутреннего слоя можно было использовать вторичное сырье.

Коэкструзия

Коэкструзия является результатом одновременной экструзии двух слоев – нижнего - 80% от толщины профиля и верхнего - 20% от толщины профиля.

Верхнее акриловое покрытие на лицевой стороне сайдинга может быть выполнено в различных цветовых тонах (с внутренней стороны профили имеют белый цвет). Оно устойчиво к царапанью, так как специфические свойства акрила придают поверхности профиля необычайную твердость, и образует единое целое с основой.

Если на такой поверхности все же возникнут царапины, то их можно легко устранить шлифованием. Такой поверхности не грозят локальный нагрев, в том числе под интенсивным солнечным излучением, отслоение или растрескивание.

5. Основные свойства продукции

По материалу изготовления и техническим характеристикам сайдинговые панели делят на виниловые, металлические и цокольные.

Виниловый (пластиковый) сайдинг — это пластиковые стеновые панели толщиной около 1 мм. Поверхность этого материала, который также называют ПВХ-вагонкой, напоминает текстуру дерева. Виниловый сайдинг не гниет, не подвергается коррозии, не нуждается в дополнительной покраске, а цвет сохраняет насыщенность, равномерность и глубину прокраса по всей поверхности панели. Срок службы качественного винилового сайдинга — 30–40 лет. Выполняя защитную и декоративную функции, виниловый сайдинг также позволяет скрыть теплоизолирующий материал, размещаемый с внешней стороны строения. Это способствует сохранению тепла и экономии энергии. Кроме того, при новом строительстве эта мера приводит к экономии кирпича и облегчению конструкции.

Профиль, или перелом сайдинга бывает одинарным – «елочка» (традиционная для Соединенных Штатов форма отделочной доски) или двойным – «корабельная доска» (традиционная для стран Европы).

Виниловый сайдинг устойчив к природным факторам старения. Материал легко переносит такие воздействия, как высокая влажность, умеренно кислая или щелочная среда, перепады температур. Он не впитывает влагу, не коробится под воздействием солнечных лучей и не гниет. Его можно применять в диапазоне температур от -50 до +50С. Кроме того, материал экологически чист и биологически инертен.

По прочности виниловый сайдинг уступает металлическому, но несмотря на это выдерживает большие перепады температур и сильный ветер. Для того, чтобы спрос на виниловый сайдинг не упал, производители продолжают совершенствовать качество материала. Улучшают его огнестойкость, прочность, декоративные качества. Улучшенный сайдинг стоить немного дороже стандартной ПВХ-вагонки.

К-во Просмотров: 1258
Бесплатно скачать Реферат: Современные строительные материалы для отделки фасадов