Реферат: Спаивание

Стекло широко применяется в совместной электронике и других отраслях: в микросхемах, микросборках электронных приборов, транзисторах, диодах, электроннолучевых трубках и электронных лампах, в микромодулях этажерочных микросхем, в кварцевых резонаторах, конденсаторах, резисторах, гермовводах гироскопов и других приборах.

Широкое применение стекло нашло благодаря наличию у него ряда замечательных свойств. Важнейшим из которых являются:

· малая зазоропроницаемость, позволяющая применить его в вакуумной электронике

· высокое электрическое сопротивление, обеспечивающее необходимую электроизоляцию металлических выводов микросхем, электроннолучевых трубок, радиоламп и других приборов

· возможность изготовления из него вакуумплотных оболочек с металлическими выводами.

Свойства стекол возможно варьировать путем изменения их химического состава.

Основные свойства технических стекол:

Термические свойства стекол являются важнейшими свойствами, т.к. в процессе формования стекло нагревается до высоких температур, а в процессе эксплуатации электронные приборов стекло испытывает тепловую нагрузку. Термические свойства стекла определяют:

* термическое расширение при нагреве, которое способствует возникновению механических напряжений в зонах стекла с различной температурой и в зонах спая стекла с другими стеклами и металлами при одинаковой их температуре из-за различия величины коэффициентов термического расширения КТРУ; у различных стекол КТР изменяется в пределах 6*107 ...98*108 о С-1 .

* температура трансформации - это температурный переход из области с малыми коэффициентами термического расширения в область с большим КТР. У кристаллических материалов при температуре трансформации меняется не только КТР, но и удельное сопротивление, показатель преломления и плотность. Практически стекло выше температуры трансформации не разрушается ни при механических ударах, ни при резком увеличении температуры. Температура трансформации для различных стекол меняется в пределах 300...1100 о С.

* термостойкость - это свойство противостоять разрушению при резком изменении температуры, она прямо пропорциональна механической прочности стекла и обратно пропорциональна модулю упругости и коэффициенту термического расширения. Кроме того, термостойкость зависит от размеров, формы и толщины стенок изделия и от дефектов в стекле. Термостойкость стекла в основном зависит от КТР:

КТР=90х10-7 о С-1 термостойкость 140 о С

КТР=6х10-7 термостойкость 1200 о С

соответственно для стекол спаиваемых платинитом и кварцевого стекла. Термостойкость изделий из стекла можно повысить не только посредством применения более термостойкого стекла, но и выбором технологичной формы изделия,

* зависимость вязкости от температуры. Вязкость стекла при нагревании постепенно уменьшается, а при повышении температуры позволяет формовать стекло в изделие (1070...1300 о С). Так как при формовании стекло неравномерно охлаждается, то в нем возникают остаточные напряжения. Остаточные напряжения можно за короткое время устранить путем нагрева стекла до температуры отжига при которой вязкость равна 2х1013 ...1014 пуаз.

Механические свойства стекол. Стекло отличается от других материалов своей хрупкостью. Для стекол наибольшее значение имеют следующие свойства:

· плотность (d=m/v кг/м2 ). Плотность зависит от химического состава и для кварцевого стекла 2, 21 раза, боросиликатного в 2,23, а у свинцового стекла с 30% PbO в три раза больше плотности воды. Хорошо отожженное стекло имеет большую плотность, чем стекло с остаточными напряжениями,

· прочность при растяжении и сжатии. Прочность при растяжении в 10...15 раз меньше, чем при сжатии и равна 3*107 ...17*107 Н/м2 ; при испытаниях на растяжение наблюдают значительный разброс из-за хрупкости материала. Прочность на сжатие более высока, чем при растяжении, и у необработанных стекол равна 75х107 ...90х107 Н/м2 .

· прочность стекла при изгибе. В этом случае стекло испытывает растяжение и сжатие. При изгибе прочность у стекла меньше, чем при растяжении,

· прочность при ударе выполняется для выяснения поведения стекла в этом случае. Испытание выполняется с помощью удара шаром и мешком, т.е. (удар “копьем” и большими предметами); мгновенное нагружение сосредоточенной и распределенной нагрузкой,

· модуль упругости при растяжении используется в расчетах термостойкости, напряжений в спаях и при определении режимов отжига,

· коэффициент Пуассона для стекол равен 0,18...0,22 и используется при расчетах термостойкости стекла, режимов отжига, напряжений в спаях и т.п.

Электрические свойства стекол. Стекло в электронике, гироскопии и др. отраслях используется для создания вакуумных вводов, через которые может протекать постоянный, переменный и высокочастотный ток, а напряжение между близко расположенными вводами может достигать десятков киловольт. Важнейшими электрическими свойствами стекол являются:

· удельное объемное и поверхностное электросопротивление стекол с увеличением температуры уменьшается. Удельное объемное сопротивление стекол в зависимости от температуры оценивается величиной Тк - 100 - температурой, при которой удельное объемное сопротивление равно 10 мОм/см (у магниевокальциевого и 350 о С у свинцового стекла). Часто у стекол зависимость удельного сопротивления от температуры прямолинейна (например, магниевокальциевое стекло); у некоторых стекол начальный период нагрева (до 250 о С) эта зависимость нелинейная, а при охлаждении линейна. Эти различия объясняются поверхностным сопротивлением, которые обычно больше расчетного. Уменьшение поверхностного сопротивления обусловлено адсорбированной на поверхности стекла пленкой воды или загрязнений. Следовательно, электрическое сопротивление стекла зависит от типа стекла и состояния его поверхности.

· угол диэлектрических потерь и диэлектрическая проницаемость стекол. Угол диэлектрических потерь d, (tgd) существенно меняется с частотой тока: сначала он уменьшается при увеличении частоты до 106 , а затем увеличивается. Поэтому стекла характеризуются обычно tgd при частоте106 (у свинцового стекла tgd½f=10 6 »1.7х103 , у барийлитиевого стекла tgd½f=10 6 »2.1х105 . Диэлектрическая проницаемость особенно при высоких температурах изменяется у стекол незначительно. Для стеклянных изоляторов, расчитанных на токи высокой частоты, используют стекла с низким углом диэлектрических потерь tgd<50х10-4 ). Отличными диэлектрическими свойствами обладает ситалл.

Отличительным свойством стекла является его большая устойчивость к воздействию многих химических реагентов, а также устойчивость к воздействию воды и паров металла. С увеличением в стекле содержания щелочных окислов его химическая стойкость уменьшается. Окислы алюминия, бора и цинка увеличивают сопротивление химическим реакциям. Химическая стойкость стекла помимо его вида определяется остаточными напряжениями; чем они больше, тем меньше химическая стойкость. Химическая стойкость определяется:

· влагостойкостью. При воздействии воды на поверхность стекла происходит гдролиз, в результате которого освобождаются щелочи, в свою очередь воздействующие на стекло:

NaSO3 +H2 O «H2 SO4 +2NaOH

Разрушение стекла ускоряется при колебаниях влажности воздуха. Электронике следует использовать стекла с высокой влагостойкостью - устойчивостью к воздействию паров щелочных металлов. Эти пары действуют на стекло восстанавливающе.

Вакуумные свойства стекол - это свойства стекол только при высоком вакууме. Наибольшую скорость диффузии через стекло имеет гелий, затем водород. Скорость диффузии значительно возрастает с повышением температуры и уменьшается с увеличением толщины стенки стекла. Газопроницаемость кварцевого стекла при давлении 760 торр - 3150*10-13 , натриевого - 9,8*10-13 см3 /сек.см2 торр. Наименьшую газопроводность имеют амосиликатные стекла (содержащие Al2 O3 около 20%).

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 257
Бесплатно скачать Реферат: Спаивание