Реферат: Сплавы магнитных переходных металлов

В методе когерентного потенциала, выражение для плотности состояний в сплаве имеет вид [177]

(ε) = - Im (ε), (81)

где

=; (82)

Σi – когерентный потенциал, определяемый из уравнения

Σi = х Δ + Σi (Δ - Σi ) (ε) (83)

Δ описывает сдвиг между атомными уровнями Fe b Ni. В [169] этот параметр очень сильно зависит от спина (Δ=5,6) и от концентрации. В [177], напротив, предполагалось, что Δ практически не зависит от этих величин, чтобы последовательно провести учёт одно-частичных свойств модели. Решение задачи удаётся провести без использования свободных параметров. Были вычислены плотность состояний (ε) и локальные плотности и для i = t2g и различных концентраций. Полученный на основе этих результатов для параметр асферичности γ показан на рис. 11. согласие с экпериментом хорошее.

Интересно отметить, что результаты для вычисленных Эльком значений μ, μ(Ni) и μ (Fe) оказываются хуже, чем в работе Хасегава и Канамори. Возможной причиной этого может быть влияние корреляций на значение μ, для описания которой в [169] использовали дополнительные свободные параметры. В то же время, как видно на рисунке 11 поведение параметра асферичности хорошо объясняется уже на основе одно-частичной плотности состояний оптимально приближённой к реальной. Дальнейшее обсуждение подхода Хасагава –Канамори дано в [179].

Другое направление описания неупорядоченных сплавов с помощью гамильтониана (69) развивалось в [180-181]; конкретно [180] рассматривался сплав Pd-Ni. Подробно проанализировал различие этих двух подходов Фукуяма. [162, 174]. Он показал, что в подходе Харриса-Цукермана [180] основное внимание сосредотачивается на динамических эффектах кулоновского взаимодействия, а пространственным изменением потенциала пренебрегается. Поэтому такие одно-частичные величины, как локальная плотность состояний, являются пространственно однородными, за исключением возможного существования виртуально связанных состояний. Схема является самосогласованной, если имеет место равенство ….. в управлении (69); в этом случае возможно, в отличие от (71) учесть некоторые процессы элекрон-дырочного рассеяния более высокого порядка.

Различие между подходами Хосегава-Канамори [169, 173, 179] и Харриса-Цукермана [180] наиболее заметно проявляется при рассмотрении коллективных эффектов, в частности, при вычислении спиновой восприимчивости. Это связанно с тем, что при построении теории электронных и магнитных свойств неупорядоченных сплавов описывающихся гамильтонианом (69), необходимо учитывать случайное расположение атомов компонент на решётке и влияния кулоновской корреляции электронов на электронную структуру и физические свойства. Если, как мы видели выше, одно-частичные характеристики сплавов (например, параметр асферичности γ ) слабо зависит от корреляционных эффектов. То, для коллективных свойств правильный учёт корреляции более существен.

К-во Просмотров: 229
Бесплатно скачать Реферат: Сплавы магнитных переходных металлов