Реферат: Сплавы магнитных переходных металлов

Сплавы магнитных переходных металлов

В последние годы интенсивно изучали электронную структуру и разнообразие физических свойств сплавов переходных металлов. Для изучения магнитных свойств сплавов переходных металлов очень полезным оказался метод рассеяния медленных нейтронов. Исследование упругого и неупругого рассеяния медленных нейтронов в сплавах позволяет получить уникальную информацию о магнитных моментах и форм-факторах, а также об изменении спин-волновой жесткости.

Небходимо отметить, что нейтронные исследования распределения магнитного момента в магнитных сплавах и изменение спин-волновой жесткости во многом стимулировали развитие современных методов расчета электронной структуры неупорядоченных сплавов, которые чрезвычайно полезны для решения многих задач физики твердого тела. К ним относят широко теперь известный метод когерентного потенциала [160].

Модель Хаббарда окозалась очень полезной для описания многих электронных и магнитных свойств сплавов переходных металлов и успешно применяется в большом количестве работ. При описании неупорядоченных сплавов с помощью модели Хаббарда вводятся случайные параметры, поэтому говорят о модели Хаббарда со случайными параметрами.

Перейдем к ее описанию. Предполагается, что взаимодействие электронов в бинарном неупорядоченном сплаве из двух магнитных компонент описывается следующим модельным гамильтонианом:

(69)

Здесь, как и в (11), , - операторы уничтожения и рождения электронов Ванье в узле i со спином s. Считается, что интегралы перескока одинаковы для обоих сортов атомов А и В, т.е. ; зонная структура чистых компонент А и В в отсутствие кулоновского взаимодействия одинаковая. Величины и - одночастичный потенциал и внутриатомное кулоновское взаимодействие соответственно:

(70)

Для неупорядоченного сплава величины и принимают случайные значения в зависимости от того, заполнен ли узел атомом А или В.

Гамильтониан (69) исследовали многие авторы в различных предельных случаях. Если предположим, что какая-либо из компонент сплава (например, В) состоит из немагнитных атомов, то можно положить параметр . Этот случай соответствует модели Вольфа [161, 162]. Если положим в (69), получим модельный гамильтониан, который рядом авторов [163, 164] был использован для теоретического описания сплава Pd-Ni. Случай, когда , рассмотрен Лютером и Фульде [165] для анализа рассеяния парамагнонов на примесях; Ямада и Шимицу [166] рассчитали спин-волновой спектр. Мория {167] детально исследовал электронную структуру вблизи магнитной примеси () в немагнитной матрице () и рассчитал целый ряд физических характеристик примесной системы. Взаимодействие между примесями было рассмотрено в [168]. Все упомянутые работы [161-168] ограничены приближением сильно разбавленного сплава.

Метод когерентного потенциала [160] позволяет рассматривать сплав с конечной концентрацией примесей. Можно выделить два направления работ, использующих метод когерентного потенциала для описания неупорядоченных сплавов.

Начало первому направлению положила работа [169]. В ней была дана теоретическая интерпретация зависимости от концентрации средней намагниченности, атомных моментов компонент и электронной теплоемкости для сплава Nic Fe1- c . К этому направлению примыкают работы [170-174].

Подход Хасегава и Канамори (ХК) основан на использовании приближения Хартри-Фока для описания внутриатомной кулоновской корреляции. В этом случае гамильтониан (69) записывался в следующем виде [169]:

(71)

где

(71а)

таким образом, неупорядоченность, описываемая в рамках приближения когерентного потенциала, характеризуется двумя параметрами и . Средние числа заполнения в (71а), которые различаются для разных компонент сплава ( или , iÎA, или В), должно определяться самосогласованным образом. Последнее обстоятельство приводит к тому, что не каждая элементарная ячейка является электрононейтральной и может иметь место перенос конечного заряда.

Для одночастичного гамильтониана (71) применима стандартная схема метода когерентного потенциала, которую здесь опишем, следуя обозначениям работы [160]. В методе когерентного потенциала (СРА) рассматривается одноэлектронный гамильтониан следующего вида:

(72)

Здесь W – периодическая часть; D – сумма случайных вкладов, каждый из которых связан с одним узлом. Одноэлектронные свойства сплава вычисляются как средние по ансамблю по всем возможным конфигурациям атомов в решетке. Обычно рассматривают усредненную подобным образом одноэлектронную функцию Грина G(z):

(73)

Определим Т-матрицу для данной конфигурации сплава с помощью уравнения

(74)

Тогда функциональное уравнение для определения неизвестного оператора S будет задаваться условием

(75)

Уравнение (75) является самосогласованным определением оператора S.

Полагая, что

(76)

можно ввести локальный оператор рассеяния

(77)

С помощью оператора Tn эффективная среда, характеризуемая оператором S, заменяется рассеянием на реальном атоме в данном узле n. В методе когерентного потенциала общее условие самосогласования (75) заменяется его одноузельным приближением

(78)

таким образом, при этом подходе примесь считается находящейся в эффективной среде, функция Грина которой подбирается так, чтобы Т-матрица рассеяния на примеси в среднем была равна нулю. При этом будем пренебрегать рассеянием парами атомов и более крупными кластерами. Метод когерентного потенциала точен в атомном пределе, когда перескоки электронов с узла на узел очень маловероятны. Сравнение приближений виртуального кристалла, средней Т-матрицы и когерентного потенциала, проведенное в [175], показало, что метод когерентного потенциала не хуже аппроксимации виртуального кристалла.

В методе когерентного потенциала усредненная функция Грина неупорядоченной системы <G(E)> получается из функции Грина для идеальной решетки заменой энергии на комплексную величину. Аналитические свойства величин, вычисляемых в одноузельном приближении когерентного потенциала, нетривиальны; функция Грина <G(z)> аналитична всюду, кроме линий разрезов, соответствующих примесной зоне и зоне основного кристалла.

Существенно, что в методе когерентного потенциала эффект рассеяния электронов вследствие неупорядоченности описывается комплексной величиной, а именно когерентным потенциалом. С точки зрения квантовой механики в этом нет ничего необычного. Напомним, что при многократном рассеянии волны на произвольном ансамбле рассеивателей вводится усредненная по ансамблю волновая функция, а потенциал в уравнении Шредингера становится комплексным [176]. Мнимая часть потенциала описывает поглощение вследствие рассеяния.

Основная характеристика спектра возбуждений системы есть плотность состояний на единицу энергии D(e). Она определяется мнимой частью функции Грина <G(z)>=GCPA . На основе одночастичной плотности состояний с помощью метода когерентного потенциала можно хорошо описать поведение параметра асферичности g для сплавов Ni, Fe и Co [177].

Параметр асферичности является важной характеристикой, экспериментально измеряемой с помощью рассеяния медленных нейтронов и определяется следующим соотношением:

g/ m (79)

где m eg - магнитный элемент, определяемый электронами в состояниях eg- типа, m - полный спиновый магнитный момент.

Эксперименты по рассеянию нейтронов показывают, что измеряемые значения g в зависимости от m очень точно укладываются на прямую линию практически для всех сплавов Ni, Fe и Co. Т. е.

g = а +bm (80)

Только для чистого Ni это не выполняется; gNi значительно меньше величины, следующей из (80). Возможной причиной такого отклонения для чистого Ni может быть либо влияние корреляции электронов, либо специфика одно-частичного поведения системы. В [177] были рассмотрены только одно-частичные свойства системы в подходе Хасегава и Канамори (71) и показано, что для расчета параметра асферичности влияние корреляции не очень существенно. Как и в [169], рассматривалась область концентраций сплава при 0 ≤ с ≤ 0,5. Хасегава и Канамори с помощью метода когерентного потенциала вычислили магнитный момент m и локальные моменты m (Ni) и m (Fe). Их результаты хорошо согласуются с экспериментом. Однако, надо заметить, что они использовали не реальную плотность состояний, а сильно идеализированную функцию и проблема решалась с использованием многих свободных параметров.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 227
Бесплатно скачать Реферат: Сплавы магнитных переходных металлов