Реферат: Способи перетворення креслення
Задача 3. Перетворити креслення так, щоб площина загального положення в новій системі площин проекцій стала проекціюючою.
Нехай площина загального положення задана трьома точками А, В, С (рис. 4). Для розв’язування сформульованої задачі нову площину проекцій потрібно розташувати перпендикулярно трикутнику ABC і одній з площин проекцій. Нова площина має бути перпендикулярна лінії перетину заданої площини з однією з площин проекцій. При цьому немає необхідності будувати таку лінію, оскільки її напрям можна встановити за допомогою головної лінії площини.
Ось чому в заданій площині перш за все проводять одну з головних ліній, наприклад горизонталь АН. Ця горизонталь потрібна для орієнтування нової площин проекцій р 4 .
Розташувавши р4 ^ АН, ми забезпечуємо виконання двох умов одразу: нова площина р4 буде перпендикулярна і до р1 і до площини трикутника. Нову вісь х24 проводять під прямим кутом до А1 Н1 . Провівши через горизонтальні проекції вершин трикутника прямі, перпендикулярні до нової осі, відкладають на них від х14 відрізки, що дорівнюють zA , zB і zС . Так одержують нову фронтальну проекцію А4 В4 С4 трикутника ABC, яка являє собою пряму лінію. Відмітимо, що на площину р4 , яка перпендикулярна до трикутника і р1 , без спотворення проекціюється кут ц, утворений трикутником з площиною р1 .
Аналогічне перетворення виконано на рис. 5, де площина р1 замінена площиною р4 , перпендикулярною до р2 і трикутника ABC. Для цього в площині трикутника була проведена фронталь AF, перпендикулярно до якої і розташовується площина р4 . Нова вісь х24 вибрана перпендикулярно до A2 F2 . Площина трикутника відносно р1 стала проекціюючою. На площину р4 без спотворення проекціюється кут y нахилу трикутника до фронтальної площини проекцій р2 .
Задача 4. Перетворити креслення так, щоб площина загального положення стала паралельною одній з площин проекцій нової системи
Нехай задано трикутник ABC у площині загального положення (рис. 6). Потрібно створити таку нову ортогональну систему площин проекцій, в якій одна з них має бути паралельною трикутнику. В системі р2 / р1 таку площину побудувати не можна. Справді, площина трикутника, не буде перпендикулярна ні до р1 ні до р2 , тобто вона не утворює з площинами проекцій ортогональної системи.
Розв’язування задачі потребує подвійної заміни площин проекцій. Суть першої заміни р2 на р4 полягає в перетворенні площини трикутника в проекціюючу площину. Цей процес описаний вище задачі № 3.
Другий етап розв’язування задачі полягає в переході від системи р1 / р4 до системи р4 / р5 . Нова площина р5 установлюється паралельно трикутнику, а отже, нова вісь х45 на епюрі проводиться паралельно прямій, на якій виявились розташованими точки А4 , В4 і С4 . Як правило, через вказані точки проводять перпендикуляри до нової осі і відкладають на них від х45 відрізки, що дорівнюють lА , lв , lс . Побудована проекція А5 В5 С5 визначає дійсну величину трикутника.
Якщо ж задана площина є проекціюючою (рис. 7), то розглядувана задача розв’язується однією заміною площин. В цьому випадку площина р4 , паралельна трикутнику ABC, утворює з р2 ортогональну систему р2 / р4 . Нова проекція А4 В4 С4 на площину р4 визначає дійсну величину трикутника.
|
1. Задачі нарисної геометрії можна розділити на позиційні та метричні. В позиційних задачах треба знайти положення геометричних фігур. В метричних задачах треба знайти натуральні розміри геометричних фігур.
2. Існують два основних способи перетворення проекцій:
– спосіб заміни площин проекцій;
– спосіб обертання.
2. Способи обертання
Спосіб плоско-паралельного переміщення
Плоско-паралельним переміщенням називається такий рух фігури в просторі, при якому всі її точки переміщуються в площинах, паралельних між собою і паралельних однієї з площин проекцій.
Основні положення плоско-паралельного переміщення:
1) при плоско-паралельному переміщенні фігури відносно площини проекцій р1 фронтальні проекції точок переміщуються по прямим, паралельним осі Ох, а горизонтальна проекція фігури залишається незмінною за своєю величиною і формою;
2) при плоско-паралельному переміщенні фігури відносно площини проекцій р2 горизонтальні проекції точок переміщуються паралельно осі Ох, а фронтальна проекція фігури залишається незмінною за своєю величиною і формою.
Спосіб обертання навколо проекціюючою осі
Сутність цього способу полягає в тому, що система площин проекцій р2 /р1 залишається нерухомою, а положення геометричних елементів міняється шляхом обертання навколо однієї або двох обраних осей до потрібного положення в даній системі.
Цим способом вирішуються задачі на визначення: