Реферат: Спуск и посадка космических аппаратов

обладающие такими (по сравнению с ЭВМ) преимуществами, как

доступность и оперативность. Применение ЭВМ в таких случаях

нерентабельно, так как в силу их большого быстродействия,


· 8 -

значительная часть дорогостоящего машинного времени расхо-дуется уже не на расчет, а на подготовительные операции при вводе-выводе информации или изменении начальных условий процесса. Применение ПЭВМ выгодно также при отладке сложных программ контактной динамики, предназначенных для серийных расчетов на больших ЭВМ. Время отладки таких программ, в силу их объема и структуры, зачастую превышает время их на-писания, а оперативная и постоянная отладка программ на ЭВМ в диалоговом режиме работы нежелательна из-за большого вре-мени их компиляции и неэкономичного режима работы ЭВМ.

Так как в настоящее время не происходит значительного усложнения структуры моделей процесса посадки, то одновре-менное увеличение быстродействия ПЭВМ вызывает широкое внедрение последних в расчетную инженерную практику.

ТИПИЧНЫЕ СХЕМЫ СПУСКА.

Посадка космических аппаратов на поверхность безатмос-ферной планеты (например,Луны) обычно производится по схеме полета, предусматривающей предварительный перевод КА на планетоцентрическую орбиту ожидания (окололунную орбиту).

Перспективность и преимущество такой схемы посадки опреде-

ляются следующими обстоятельствами: свобода в выборе места

посадки; возможность проверки системы управления непосредс-


· 9 -

твенно перед спуском; возможность уменьшения массы СА, так как часть массы можно оставить на орбите ожидания (напри-мер, топливо или прочный термозащитный отсек для посадки на Землю при возвращении).

После проведения на промежуточной орбите необходимых операций подготовки к спуску включается тормозной двига-тель, и спускаемый аппарат переводится с орбиты ожидания на переходную орбиту - эллипс траектории спуска (рис.1) с пе-рицентром вблизи предполагаемого места посадки. В опреде-ленной точке переходной орбиты вновь включается двигатель и начинается участок основного торможения,на котором решается задача эффективного гашения горизонтальной составляющей вектора скорости СА.

Управление на этом участке производится по программе, обеспечивающей заданные значения координат в конце участка при минимальном расходе топлива; информация при этом посту-пает с инерциальных датчиков.

Заданные конечные значения координат определяют вид но-минальной траектории спуска на последующем участке конечно-го спуска («прецизионном» участке); спуск может осущест-вляться по вертикальной или наклонной траектории.

Типичные траектории полета на основном участке основ-

ного торможения представлены на рис.2. Кривая 1 заканчива-

ется наклонной траекторией конечного спуска, кривая 2 -


· 10 -

вертикальной траекторией.Стрелками показаны направления вектора тяги ракетного двигателя, совпадающие с продольной осью СА. На рис.3 представлена (в увеличенном масштабе) наклонная траектория полета на участке (А,О) конечного спуска.

На участке конечного спуска, измерение фазовых коорди-нат объекта производится радиолокационным дальномером и из-мерителем скорости (доплеровским локатором).

К началу этого участка могут накопиться значительные отклонения (от программных значений) координат, характери-зующих процесс спуска. Причиной этого являются случайные погрешности определения параметров орбиты ожидания, погреш-ность отработки тормозного импульса, недостоверность сведе-ний о гравитационном поле планеты, закладываемых в расчет траектории спуска.

Кроме того, полет на всех участках подвержен действию случайных возмущений - неопределенности величины массы СА, отклонения от номинала тяги тормозного двигателя и т.д. Все это в сочетании с неточностью априорного знания рельефа по-верхности в районе посадки, делает необходимым терминальное управление мягкой посадкой. В качестве исходной информации используются результаты измерения высоты и скорости сниже-ния. Система управления мягкой посадкой должна обеспечить заданную точность посадки при минимальных затратах топлива.


· 11 -

На завершающем участке спуска (см. рис.3) - «верньер-ном» участке (В,О) происходит обычно вертикальный полет СА с глубоким дросселированием тяги тормозного двигателя. Верньерный участок вводится для того, чтобы повысить конеч-ную точность посадки, так как влияние погрешностей опреде-ления параметров траектории на точность посадки СА снижает-ся при уменьшении величины отрицательного ускорения. Кроме того, если тяга непосредственно перед посадкой мала, то уменьшается возможность выброса породы под действием газо-вой струи и уменьшается опрокидывающее воздейсвие на СА от-раженной от поверхности планеты реактивной струи.

ЗАДАЧИ, РЕШАЕМЫЕ СИСТЕМОЙ УПРАВЛЕНИЯ ПОЛЕТОМ СА.

Таким образом, основное назначение системы управления полетом СА - компенсация возмущений, возникающих в полете или являющихся результатом неточности выведения СА на орби-ту ожидания. СА стартует обычно с орбиты ожидания, поэтому задачи управления естественно разделить на следующие груп-пы:

1.управление на участке предварительного торможения;

К-во Просмотров: 483
Бесплатно скачать Реферат: Спуск и посадка космических аппаратов