Реферат: Стандартные интерфейсы подключения датчиков и исследовательских приборов
-Кабель должен иметь экран (фольгу), покрывающий не менее 85% внешней поверхности. На концах кабеля экран должен быть окольцован и соединен с контактом разъема.
Управление параллельным портом разделяется на два этапа — предварительное конфигурирование (Setup) аппаратных средств порта и текущее (оперативное) переключение режимов работы прикладным или системным ПО. Оперативное переключение возможно только в пределах режимов, разрешенных при конфигурировании. Способ и возможности конфигурирования LPT-портов зависят от его исполнения и местоположения. Порт, расположенный на плате расширения (обычно на мультикарте), устанавливаемой в слот ISA или ISA+VLB, обычно конфигурируется джамперами на самой плате. Порт, расположенный на системной плате, обычно конфигурируется через BIOS Setup.
Конфигурированию подлежат следующие параметры:
-Базовый адрес, который может иметь значение 3BCh, 378h и 278h. При инициализации BIOS проверяет наличие портов по адресам именно в этом порядке и, соответственно, присваивает обнаруженным портам логические имена LPT1, LPT2, LPT3. .Адрес 3BCh имеет адаптер порта, расположенный на плате MDA или HGC. Большинство портов по умолчанию конфигурируется на адрес 378h и может переключаться на 278h.
-Используемая линия запроса прерывания, для LPT1 обычно используется IRQ7, для LPT2 - IRQ5. Во многих “настольных” применениях прерывания от принтера не используются, и этот дефицитный ресурс PC можно сэкономить. Однако при использовании скоростных режимов ЕСР (или Fast Centronics) работа по прерываниям может заметно повысить производительность и снизить загрузку процессора.
-Использование канала DMA для режимов ЕСР и Fast Centromcs — разрешение и номер канала DMA.
Режим работы порта может быть задан в следующих вариантах:
-SPP — порт работает только в стандартном однонаправленном программно-управляемом режиме.
-PS/2, он же Bi-Directional — отличается от SPP возможностью реверса канала (с помощью установки CR.5=1).
-Fast Centromcs — аппаратное формирование протокола Centromcs с использованием FIFO-буфера и, возможно, DMA.
Подсоединение кабеля к адаптеру параллельного интерфейса производится через 25-контактный разъём типа D-shell (DB-25) (таблица 1).Распределение сигналов по контактам обоих разъемов показано в таблице 2. Вообще говоря, для простой передачи данных на принтер требуются не все сигналы определенные стандартом Centronics. Для того чтобы обеспечить функционирование интерфейса, достаточно использовать только 8 бит данных (D0-D7), строб сигнал (Data Strobe) и сигнал занятости (Busy). Теперь несколько слов о тех сигналах, которые обычно используются.
Data Strobe. Когда компьютер посылает данные на устройство, он в течение 5 мкс должен активировать этот сигнал (низкий уровень). Этим устройству сообщается о том, что данные на соответствующих шинах готовы.
Data 0-7. По этим 8 сигнальным линиям данные передаются от компьютера к устройству. После установления сигнала Data Strobe устройство читает эту информацию.
Acknowledge. Если устройство приняло выставленные компьютером данные, то оно в подтверждение в течение приблизительно 10 мкс удерживает эту линию в активном состоянии (низкий уровень).
Busy. Если устройство не может принять данные, то сигнал активизируется (высокий уровень). Это может произойти, например, в следующих случаях: при инициализации устройства, если устройство находится в состоянии off-line, при появлении внутренней ошибки.
Примечание: Порты расширенных стандартов позволяют производить чтение с внешних устройств по линиям данных D0-D7. Для включения режима чтения необходимо установить в 1 бит 5 регистра управления интерфейсом (третий порт, базовый адрес плюс 2).
Таблица 1. Сигналы параллельного интерфейса (разъем DB25).
Контакт | Направление | Сигнал |
1 | Выход | Data Strobe |
2 | Выход | Data0 |
3 | Выход | Data1 |
4 | Выход | Data2 |
5 | Выход | Data3 |
6 | Выход | Data4 |
7 | Выход | Data5 |
8 | Выход | Data6 |
9 | Выход | Data7 |
10 | Вход | Acknowledge |
11 | Вход | Busy |
12 | Вход | Paper Out |
13 | Вход | Select |
14 | Выход | Auto feed |
15 | Вход | Error |
16 | Выход | Init |
17 | Выход | Select Input |
18-25 | - | Ground |
Таблица 2. Сигналы параллельного интерфейса (разъем Centronics)
Контакт |
Направление | Сигнал |
1 | Вход | Data Strobe |
2 | Вход | Data0 |
3 | Вход | Data1 |
4 | Вход | Data2 |
5 | Вход | Data3 |
6 | Вход | Data4 |
7 | Вход | Data5 |
8 | Вход | Data6 |
9 | Вход | Data7 |
10 | Выход | Acknowledge |
11 | Выход | Busy |
12 | Выход | Paper Out |
13 | Выход | Select |
14 | Вход | Auto feed |
15 | - | No connect |
16 | - | Gnd |
17 | - | Shassis Gnd |
18 | - | +5 V |
19-30 | - | Gnd |
31 | Вход | Init |
32 | Выход | Error |
33 | - | Gnd |
34 | - | Clock |
35 | Вход | Test |
36 | Вход | Select Input |
Последовательные порты ПЭВМ . Интерфейс RS-232C.
Последовательная передача данных
Микропроцессорная система без средств ввода и вывода оказывается бесполезной. Характеристики и объемы ввода и вывода в системе определяются, в первую очередь, спецификой ее применения - например, в микропроцессорной системе управления некоторым промышленным процессом не требуется клавиатура и дисплей, так как почти наверняка ее дистанционно программирует и контролирует главный микрокомпьютер (с использованием последовательной линии RS-232C).
Поскольку данные обычно представлены на шине микропроцессора в параллельной форме (байтами, словами), их последовательный ввод-вывод оказывается несколько сложным. Для последовательного ввода потребуется средства преобразования последовательных входных данных в параллельные данные, которые можно поместить на шину. С другой стороны, для последовательного вывода необходимы средства преобразования параллельных данных, представленных на шине, в последовательные выходные данные. В первом случае преобразование осуществляется регистром сдвига с последовательным входом и параллельным выходом (SIPO), а во втором - регистром сдвига с параллельным входом и последовательным выходом (PISO).
Последовательные данные передаются в синхронном или асинхронном режимах. В синхронном режиме все передачи осуществляются под управлением общего сигнала синхронизации, который должен присутствовать на обоих концах линии связи. Асинхронная передача подразумевает передачу данных пакетами ; каждый пакет содержит необходимую информацию, требующуюся для декодирования содержащихся в нем данных. Конечно, второй режим сложнее, но у него есть серьезное преимущество: не нужен отдельный сигнал синхронизации.
Существуют специальные микросхемы ввода и вывода, решающие проблемы преобразования, описанные выше. Вот список наиболее типичных сигналов таких микросхем:
D0-D7 - входные-выходные линии данных, подключаемые непосредственно к шине процессора;
RXD - принимаемые данные (входные последовательные данные);