Реферат: Становление первичных экосистем. Характер взаимодействия организмов на ранних этапах эволюции жизни
Введение
1. Становление первичных экосистем. Первичный бульон и эобионты
2. Характер взаимодействия организмов на ранних этапах эволюции жизни
3. Эволюция ферментных систем и отбор
Заключение
Список литературы
Введение
Природа жизни, ее происхождение, разнообразие живых существ и объединяющая их структурная и функциональная близость занимают одно из центральных мест в биологической проблематике. Переход от простых живых организмов к более сложным и развитие сложных организмов, возникновение новых организмов, новых структур, форм и видов пытались объяснить многие естествоиспытатели. Одни из них считали, что организмы практически не изменялись, другие рассматривали изменения форм и видов живых организмов как постепенный эволюционный процесс, происходивший под действием различных факторов. В разработке гипотез и теорий развития жизни принимали участие многие ученые, такие как Ж. Кювье, Ж.Б. Ламарк, Дж. Уоллес, Ч. Дарвин, В. Иогансен, Г. Мендель и многие другие.
Целью данной работы является формирование представлений об эволюции живых организмов на ранней стадии развития жизни и ознакомление с основными процессами, происходившими в этот период.
1. Становление первичных экосистем. Первичный бульон и эобионты
Современная теория возникновения жизни на Земле, называемая теорией биопоэза , была сформулирована в 1947 г. английским ученым Дж.Берналом (1901–1971). Суть этой теории сводится к представлениям о трех этапах возникновения жизни[1] . На первом этапе произошло возникновение органических молекул из неорганических, т.е. произошел абиогенный синтез. Опарин и Холдейн предположили (а позднее, в 1953 г., Миллер подтвердил это экспериментально), что в основе абиогенного синтеза лежало воздействие сильных электрических разрядов, ультрафиолетового облучения и радиации на первичную атмосферу Земли, содержавшую пары воды, метан, аммиак, углекислый газ, азот и в очень небольшом количестве водород. В результате образовались углеродные и азотистые соединения умеренной сложности – аминокислоты и азотистые основания (возможно, аденин). Органических веществ, образовавшихся на первом этапе, было очень мало, вероятность реакций между ними была чрезвычайно мала.
На втором этапе шел процесс концентрации возникших органических веществ. Такая концентрация могла идти за счет осаждения органики на частицах глины или гидроокиси железа за счет образования органическими веществами пленки на поверхности воды – такую пленку прибивало к берегу, где концентрация органических веществ увеличивалась в тысячи раз. Кроме того, концентрированию мог способствовать процесс объединения однородных частиц в разбавленных растворах – закон, хорошо известный в химии. В результате повышения концентрации вероятность взаимодействия между органическими молекулами значительно возрастала, что в конечном счете привело к возникновению коацерватов – молекул, окруженных водной оболочкой; такие коацерваты объединялись, образуя многомолекулярные комплексы, т.е. могли уже появиться полимеры.
На третьем этапе началось самовоспроизведение органических молекул, т.е. было положено начало размножению. Вероятно, первыми такими молекулами были ДНК и РНК.
В дальнейшем очень важным процессом было возникновение мембран, т.е. обособление клеток. В основе этого процесса могла лежать адсорбция растворенных в воде белковых молекул на поверхности липидной пленки, покрывающей водоемы. В результате могли возникать двойные липопротеидные пленки, от которых могли отрываться пузырьки. Такие пузырьки, теоретически, могли покрываться вторым липидно-белковым слоем, что приводило к возникновению четырехслойной оболочки с двумя слоями белков по краям и двумя слоями липидов внутри. Взаимная ориентация этих слоев определялась силами электрического притяжения и гидрофобного взаимодействия. Описанный механизм образования мембран – только один из возможных. Образование мембран привело к возникновению систем, которые были способны к саморегуляции и самовоспроизведению. Это и были первые живые организмы – пробионты.
Органической эволюции живых существ на Земле предшествовала эволюция химическая. Эта эволюция была гораздо более длительной; она шла от атома до молекулы, от молекулы до полимера, от полимера до организма.
Химической эволюции, в свою очередь, предшествовала звездная стадия развития доорганической природы; предполагают, что эти события происходили около 4,5 – 6 млрд лет тому назад. В этот период поверхность планеты была раскалена до 1000 °С, все элементы находились в атомарном состоянии. Из-за вращательного движения Земли при постепенном снижении температуры атомы тяжелых металлов перемещались к центру, на поверхности оставались атомы легких элементов (азота, водорода, углерода и др.); при взаимодействии этих элементов образовывались газы, которые поднимались вверх.
На планетарной стадии развития доорганической природы возникла первичная атмосфера. В этот период появились вода в виде пара, аммиак, метан, водород, углекислый газ, т.е. были созданы условия для начала собственно химической эволюции. При охлаждении до температуры 100 °С начался процесс конденсации. Пошли горячие ливни, сопровождавшиеся непрерывными молниями, образовались большие водоемы. В горячей воде растворялись газы, соли, они вступали в химические реакции, в результате чего на первой стадии химической эволюции произошло формирование из воды, метана и аммиака промежуточных органических молекул, характерных для живых организмов. Главным образом это были углеродные и азотистые соединения умеренной сложности – аминокислоты и азотистые основания. Эти соединения входили в состав так называемого первичного бульона . Важно понимать, что свободного кислорода в это время на Земле не было. Он находился в связанном состоянии с такими элементами, как железо, алюминий, кремний, в составе минералов в земной коре. Кислород входил также в состав воды, оксида углерода (II) и оксида углерода (IV).
Постоянное поступление извне энергии излучения и других ее видов привело к накоплению на ранней Земле веществ с высоким содержанием свободной энергии. Эти продукты должны были оставаться растворенными или взвешенными в воде; в воду же попадали продукты, образующиеся в атмосфере. Кроме того, могли возникать асфальтоподобные и смолистые вещества. Наряду с процессами синтеза протекали и процессы распада, так что состояние было близко к стационарному.
Водный раствор и суспензия, по мнению Опарина и Холдейна, послужили той средой, в которой развилась жизнь — это так называемый «разбавленный бульон» Холдейна. Но вполне вероятно, что многие компоненты адсорбировались погруженными в воду породами и впоследствии здесь вступали в различные реакции. Подводой вещества были защищены от разрушения постоянно льющимся ультрафиолетовым светом или электрическими разрядами. Сначала, разумеется, не было ферментов, способных катализировать реакции, и все же некоторые типы реакций могли идти довольно быстро и без ферментов. Общее уравнение разных химических реакций можно выразить как:
aA + bB+…=cC+dD… .
Каждому типу реакции между растворенными веществами можно приписать изменение свободной энергии ΔG.Самыми важными были окислительно-восстановительные реакции. Позднее они стали всеобщим химическим источником энергии для всего живого[2] .
На второй стадии шла полимеризация молекул, приведшая к решающему событию – возникновению динамической структуры, которую мы называем жизнью. На этой стадии под влиянием мощного ультрафиолетового излучения из смеси газов могли сначала образоваться промежуточные соединения, такие как цианистый водород, формальдегид, муравьиная кислота и др. Затем в результате химической эволюции эти соединения образовали биологические мономеры. На этом закончился первый этап биопоэза.
Возможность такого рода событий была показана в 1953 г. в опытах Миллера и Юри. Эти ученые подавали смесь метана, аммиака и водорода в специальные сосуды и пропускали через эту смесь мощный искровой разряд, который заменял ультрафиолетовое излучение. В результате длительного непрерывного пропускания разряда в водной фазе образовались различные органические соединения, среди которых были обнаружены биологические мономеры: мочевина, молочная кислота, несколько разных аминокислот. Позднее эти опыты были повторены с использованием других видов энергии, в частности радиационного излучения.
Образовавшиеся биологические мономеры частично разрушались, частично вступали в химические реакции с другими мономерами с образованием биополимеров. Это была вторая стадия биопоэза, результатом которой было образование, скорее всего, молекул РНК. Предполагают, что именно эти молекулы были первыми биополимерами на Земле. В дальнейшем могли возникнуть первые молекулы ДНК и белки, обладающие ферментативной активностью. Наличие таких биополимеров позволяло образовывать системы с обратной связью. Системы такого вида уже обладают некоторыми признаками жизни, но еще не могут быть отнесены к собственно живым организмам.
Итак, отдельные похожие и сравнительно несложные органические соединения начали объединяться в крупные биологические молекулы. Образовались ферменты – белковые вещества-катализаторы, которые способствуют возникновению или распаду молекул. В результате деятельности первичных ферментов возникли одни из важнейших органических соединений – нуклеиновые кислоты, сложные полимерные (т.е. состоящие из многих блоков-мономеров) вещества. Мономеры в нуклеиновых кислотах расположены таким образом, что несут определенную информацию, код, заключающийся в том, что каждой аминокислоте, входящей в белок, соответствует определенный набор из трех мономеров, так называемый триплет нуклеиновой кислоты. Таким образом, на основе «планов» нуклеиновых кислот строятся белки и происходит обмен с внешней средой веществом и энергией. Затем возникают и другие сложные органические соединения. Эта стадия была ключевой, переломной в возникновении жизни на Земле. Молекулы нуклеиновых кислот приобрели свойство самовоспроизведения себе подобных; заключенная в кислотах информация вела к строгой упорядоченности отдельных составляющих их мономеров. Молекулы нуклеиновых кислот стали управлять всем процессом образования белковых веществ[3] .
На третьей стадии шло развитие организмов и становление их внутренней организации: происходил переход от простой метаболизирующей среды, лишенной специфических границ и внутренних различий, к организму, обособившемуся от окружающей неживой природы. Гипотетическим, но очень важным этапом на этом пути являются эобионты (или пробионты), некие предбиологические образования, возникшие из коллоидов, за которыми следуют более сложные компоненты живой материи – клеточные органеллы.
Помимо изложенной выше основной и общепризнанной теории происхождения жизни имеются и альтернативные гипотезы. Об одной из них мы уже упоминали – это теория «космического заноса» (панспермии), согласно которой одним из главных источников предбиологических органических молекул является вещество комет. Эта идея основана на том факте, что в кометах были обнаружены большие количества циана и синильной кислоты; из их производных – цианамида или дицианамида могли бы синтезироваться сложные органические соединения. Предполагают также, что источником атмосферного кислорода помимо фотосинтеза могли быть и другие процессы, например, разложение водяного пара в верхних слоях атмосферы с последующим рассеянием водорода гравитационным полем Земли.
2. Характер взаимодействия организмов на ранних этапах эволюции жизни
Многие биологи полагают, что все разнообразие жизни на нашей планете происходит от единственного исходного вида – "универсального предка". Другие, в том числе крупнейший микробиолог академик Г.А.Заварзин, несогласны с этим. Устойчивое существование биосферы возможно только при условии относительной замкнутости биогеохимических циклов. В противном случае живые существа очень быстро израсходуют все ресурсы или отравят себя продуктами собственной жизнедеятельности.
Замкнутость циклов может быть обеспечена только сообществом из нескольких разных видов микроорганизмов, разделивших между собой биогеохимические функции (примером такого сообщества являются циано-бактериальные маты). Заварзин считает, что организм, способный в одиночку замкнуть круговорот, столь же невозможен, как и вечный двигатель.
Для этапа химической преджизни это еще более очевидно. Никакая отдельно взятая органическая молекула не сможет устойчиво самовоспроизводиться и поддерживать гомеостаз в окружающей среде. На это способны только комплексы из довольно большого числа разных молекул, поделивших между собой функции.
Скорее всего, общим предком всего живого был не один вид, а полиморфное сообщество, в котором происходил активный обмен наследственным материалом между организмами. Разнообразие, симбиоз, разделение функций, информационный обмен – изначальные свойства земной жизни.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--