Реферат: Стекло. Стекловолокно. Стеклоэмали
Стекла, полученные на основе нитратных, сульфатных и карбонатных соединений, в настоящее время представляют научный интерес, но практического применения пока не имеют.
Традиционная технология получения стекол включает переохлаждение расплава до твердого состояния без кристаллизации. На этом способе основана мировая промышленная технология производства стекла.
Создание технических устройств, позволяющих отводить тепло с более высокой скоростью, расширяет число веществ, которые удается получить в стеклообразном состоянии путем охлаждения расплава. Сверхвысокие скорости переохлаждения порядка нескольких миллионов градусов в 1 с позволяют фиксировать в стеклообразном состоянии сплавы металлов (например, в системе Fe—Mi—В—Р).
Промышленное значение приобретают способы получения стекол путем вакуумного испарения, конденсации из паровой фазы, плазменного напыления. В этих случаях стекло удается получить из газовой фазы, минуя расплавленное состояние.
Облучение кристаллов частицами высоких энергий или воздействие на них ударной волны приводит к неупорядоченному смещению частиц из положений равновесия и, таким образом, к аморфизации структуры, в результате чего твердые кристаллические вещества могут быть переведены в стеклообразное состояние, минуя стадию плавления.
5. СТЕКЛЯННОЕ ВОЛОКНО
Классификация стеклянных волокон и их составы
Стеклянным волокном (СВ) называют искусственное волокно, изготовляемое различными способами из расплавленного стекла.
Известно два основных вида СВ: непрерывное и штапельное. Для непрерывного волокна, получаемого вытягиванием из расплава стекла, характерна неограниченно большая длина, прямолинейность и параллельное расположение волокон в нити. Штапельное волокно, получаемое путем расчленения струи расплавленного стекла воздухом, паром или газовым потоком, отличает небольшая длина, извитость и хаотическое расположение волокон в пространстве. Изделия из непрерывного волокна по внешнему виду напоминают натуральный или искусственный шелк, а из штапельного—хлопок или шерсть.
Стеклянные волокна различного химического состава обладают ценными свойствами — негорючестью, стойкостью к коррозии, высокой прочностью, сравнительно малой плотностью, высокими оптическими, диэлектрическими и теплофизическими свойствами, что позволяет их применять в различных областях техники, главным образом, для изготовления текстильных материалов и изделий (нитей, жгутов, лент, и нетканых материалов). Штапельные СВ в процессе их получения формируют в виде ваты, матов и холстов, скрепляемых органическими и неорганическими связующими.
Материалы из непрерывных и штапельных стеклянных волокон широко используются в электротехнической промышленности, машиностроении, химической промышленности, строительстве и других отраслях народного хозяйства.
Большую часть изделий из непрерывных стеклянных волокон применяют в качестве армирующих материалов: стеклотканей, стеклопластиков, композитов и стеклоцемента при изготовлении электроизоляции, коррозионно-стойких трубопроводов и емкостей — в химической, автомобильной промышленности, строительстве, железнодорожном транспорте, судостроении, авиационной, космической технике и др.
Материалы из штапельного волокна используют для теплозвуко-электроизоляции, фильтрации химически агрессивных сред и др.
Для получения стеклянных волокон с различными показателями свойств синтезируют стекла, обеспечивающие эти свойства, но одновременно обладающие стабильностью процесса волокнообразования в заданном интервале температур. Способность стекломассы вытягиваться в волокно определяется отношением ее вязкости к поверхностному натяжению. На стабильность процесса волокнообразования в значительной степени оказывает влияние кристаллизационная способность стекла (температура плавления кристаллов, скорость образования центров кристаллов, скорость линейного роста кристаллов), вязкость, скорость твердения, химическая однородность стекломассы и содержание в ней газов.
Для производства СВ применимы стекла с температурой ликвидуса на 30—50°С ниже температуры его формования, поэтому составы стекол, пригодные для формования стеклянных волокон различного назначения, отличаются от известных рецептур «массивных» стекол.
Качество стекла для выработки стекловолокна в значительной степени зависит от гомогенизации и дегазации стекломассы, использования комплексного тонко измельченного сырья, высокой температуры варки стекла (1600°С и выше), принудительного перемешивания стекломассы, применения стекло стойких огнеупоров и др.
Для варки стекол в производстве стеклянных волокон применяют горшковые, ванные печи непрерывного действия, пламенные печи прямого нагрева, электрические и газоэлектрические стекловаренные печи.
Для получения стеклянных волокон стекла синтезируют в различных стеклообразных системах используя:
1) бесщелочные, алюмоборосиликатные стекла, содержащие до 0,5— 2,0 % по массе R2 О — тип Е (электроизоляционного назначения);
2) бесщелочные или малощелочные натриево-кальциево-алюмо-боро-силикатные стекла (до 10 % по массе R2 О) —тип С (химически устойчивые);
3) щелочные—натриево-кальциево-силикатные стекла, содержащие более 10% по массе RzO—тип А (тепло—звукоизоляция);
4) бесщелочные магнийалюмосиликатные и другого состава стекла (высокопрочные и высокомодульные);
5) бесщелочные из оксидов тугоплавких металлов или их соединений стекла (кварцевые, высококремнеземные, алюмокремнеземные, алю-мосиликатные и другие высокотемпературостойкие).
Во фторфосфатных стеклах, содержащих до 40— 50 мол. % соединений редкоземельных элементов, получены фтороустойчивые материалы с интересными магнитооптическими и сцинтилляционными свойствами. Особый интерес в настоящее время представляют фторфосфатные стекла, которые по своим оптическим свойствам являются ближайшими аналогами фторобериллатных, а также фторборатные стекла, обладающие сочетанием сравнительно низких ТКЛР (50—120) и температур растекания (400—600 °С) и поэтому перспективные для спаивания различных материалов.
6. ЭМАЛИ И ПОКРЫТИЯ
6.1 ТЕХНОЛОГИЯ ЭМАЛЕЙ И НЕОРГАНИЧЕСКИХ ПОКРЫТИИ
Физико-химические основы эмалирования
Эмаль представляет собой стеклообразное (или преимущественно стеклообразное) вещество, в основном состоящее из оксидов, полученное плавлением или фриттованием (неполным плавлением), которое одним или несколькими слоями наносят на металлическое изделие. В технологии эмали существует та же проблема, что и при изготовлении металлостеклянных спаев — согласование физико-механических характеристик металлической и оксидной систем для обеспечения их прочного сцепления и допустимого уровня напряжений в обеих составляющих. В связи с этим разные металлы эмалируют разными эмалями. Известно и общее требование: обычно формирование бездефектного покрытия и процессы, обеспечивающие сцепление, следует вести при вязкости эмали около 100 Па-с и поверхностном натяжении около 300 мДж/м2 .
Химический состав эмали определяется назначением эмалевого покрытия и характеристиками защищаемого металла. Области применения эмалевых покрытий столь разнообразны, что выделение каких-либо общих физико-химических их характеристик, как и у стекол, невозможно. В отличие от стекла, структурные превращения в эмали оказывают значительно большее влияние на совокупность эксплуатационных свойств покрытия. Эти преобразования имеют существенное значение и для достижения прочного сцепления эмали в твердом состоянии с металлом.