Реферат: СТОХАСТИЧНОСТЬ И НЕЛИНЕЙНОСТЬ СИСТЕМ. НЕРАВНОВЕСНОСТЬ СИСТЕМ. ЭНТРОПИЯ И НЕГЭНТРОПИЯ
следствие детерминированных законов. Мир случайный уже с самого начала. Учёные считают, что даже через доли секунд после "большого взрыва" вопрос выбора при возникновении между миром или антимиром решался случайно. Если были бы ничтожно мало изменены величины универсальных констант универсума, то развитие его произошло бы в совсем другом направлении.
Обобщённым показателем упорядоченности в стохастических и нелинейных процессах является ОНГ систем.
СТРУКТУРНЫЕ УРОВНИ СИСТЕМ
Любая сложная система обладает иерархической структурой. Они содержат подсистемы, которые флуктуируют, в то же время сохраняя свою устойчивость, динамичность, преемственность и характерные свойства.
Система может быть охарактеризована, по мере повышения сложности, следующими показателями: параметрами состояния, упорядоченности, структуры, организованности, управляемости. Состоянием системы называется точка или область расположения его в многомерном пространстве состояния. На сложные системы оказывает влияние огромное количество факторов (независимых переменных) и математическая обработка их действия связана с большими трудностями. В качестве меры упорядоченности системы R обычно определяют степень отклонения её состояния от термодинамического равновесия, т.н. введенную Шенноном величину "избыточности".
R = 1 ? ОЭф ,
где: ОЭф фактическая ОЭ системы ОЭм ОЭм – максимально возможная ОЭ
R = 0, если система находится в состоянии полного беспорядка (ОЭф = ОЭм)
R = 1, для идеально упорядоченной системы, ОЭф = 0
Наиболее существенной характеристикой систем является их структура, что определяет количество составляющих их элементов и их взаимоотношение. Дефиниций структур много, но приведём здесь некоторые:
1. Структура, это вид взаимосвязи элементов в системе, зависящий от закономерностей, по которым элементы находятся во взаимных влияниях.
2. Структура, это упорядоченность (композиция) элементов, сохраняющаяся (инвариантная) относительно определённых изменений (преобразований).
3. Структура, это относительно устойчивый, упорядоченный способ связи элементов, придающий их взаимодействию в рамках внутренней расчленённости объектов целостный характер.
Во всех формулировках для структуры прямо или косвенно подтверждается необходимость введения третьего компонента как дополнительной характеристики системы, кроме элементов и их взаимоотношений. Компонент называется по разному, но существо его выражается в общесистемных свойствах, целевых критериях и общих закономерностях.
В общем, для обеспечения упорядоченности должны существовать какие-то общие принципы, критерии, существенные свойства. Как объясняется в дальнейшем, эти общие принципы носят общее название обобщённой негэнтропии или связанной информации (ОНГ).
НЕРАВНОВЕСНОСТЬ СИСТЕМ
В абсолютно равновесных системах энтропия достигает максимально возможную величину при данном количестве элементов. Элементы при ЭО макс. действуют неограниченно "свободно", независимо от влияния других элементов. В системе отсутствует какая-либо упорядоченность.
Очевидно, абсолютного хаоса в системах не существует. Все существующие реально системы имеют в структуре менее или более заметный порядок и соответствующую ОНГ. Чем больше система имеет в структуре упорядочённость, тем больше она удаляется от равновесного состояния. С другой стороны неравновесные системы стремятся двигаться в сторону термодинамического равновесия, т.е. увеличивать свою ОЭ. Если они не получают дополнительную энергию или ОНГ, они не могут в длительное время сохранять своё неравновесное состояние. Но равновесие может быть и динамическим, где процессы протекают в равном объёме в противоположные стороны. Внешне сохраняется равновесие, т.е. устойчивость системы. Если скорость таких процессов мало изменяется, то такие режимы являются стационарными, т.е. относительно стабильными во времени. Скорость процессов может изменятся в очень широких пределах. Если скорость процессов очень маленькая, то система может находится в состоянии локального квазиравновесия, т.е. кажущегося равновесия. Неравновесность систем играет существенную роль в их инфообмене. Чем больше неравновесность, тем больше
их чувствительность и способность принимать информацию и тем больше возможности саморазвития системы.
ЦЕЛОСТНОСТЬ СИСТЕМ
Целостность систем вытекает из одного их признака упорядоченности. Однако, их цели или целесообразность можно определить только получая информацию о вышестоящей системе. В то же время целостность и целенаправленное действие системы или её элементов может иметь разные степени упорядоченности. Например, в сложных системах и в организациях может быть центральное управление вместе с относительной самостоятельностью индивидов. Целостность систем вытекает из общих свойств объединённого суперполя в универсуме. К таким свойствам считают гармонию и когерентность, общие свойства квантовой природы явлений (т.н. квантовый холизм) и вероятностная природа флуктуации и процессов развития.
ПРОСТРАНСТВЕННЫЕ ПОЛЯ И ВОЛНЫ КАК СИСТЕМЫ
В универсуме существуют различного рода поля, которые могут быть "в состоянии покоя" или находиться в возбуждённом состоянии (образования волн, виртуальных частиц и др.) Известно много типов полей:
гравитационное поле;
электромагнитное поле (свет, радиоволны и др.);
поля малого и большого взаимодействия;
квантомеханические поля (позитронное поле).
Все поля соединяются в сверхмалом пространстве (ниже длины шкалы Планка, 1035 м) в объединённое суперполе, из возбуждения которого могут возникать элементы вещества, энергии и ОНГ. Недостаточно доказано как будто существование вокруг живых существ ещё особого рода полей: фантомного, астрального, ментального и торсионного (спинового) поля.
Высказано предположение ещё о наличии информационного поля. Связанная форма информации ОНГ содержится в каждой системе вместе с массой и энергией. Однако её определение, также как и выяснение процессов её превращения и переходов часто представляет большие трудности.