Реферат: Строение и свойства полимеров

Введение

Полимерные вещества внедрились во все сферы человеческой деятельности – технику, здравоохранение, быт. Ежедневно мы сталкиваемся с различными пластмассами, резинами, синтетическими волокнами. Полимерные материалы обладают многими полезными свойствами: они высокоустойчивы в агрессивных средах, хорошие диэлектрики и теплоизоляторы. Некоторые полимеры обладают высокой стойкостью к низким температурам, другие - водоотталкивающими cвойствами и так далее.

Недостатками многих высокомолекулярных соединений является склонность к старению и, в частности, к деструкции – процессу уменьшению длины цепи и размеров молекул. Деструкция может быть вызвана механическими нагрузками, действий света, теплоты, воды и особенно кислорода и озона. Процесс уменьшения цепи идёт за счёт разрушения связей С-С и образования радикалов, которые в свою очередь, способствуют дальнейшему разрушению полимерных молекул.

Полимерные молекулы представляют собой обширный класс соединений, основными отличительными характеристиками которых являются большая молекулярная масса и высокая конформационная гибкость цепи. Можно с уверенностью сказать, что и все характеристические свойства таких молекул, а также связанные с этими свойствами возможности их применения обусловлены вышеуказанными особенностями. Большой интерес таким образом представляет исследование возможности априорного предсказания химического и физического поведения полимера на основании анализа его строения. Такую возможность предоставляют методы молекулярной механики и молекулярной динамики, реализованные в виде компьютерных расчетных программ.

1. Особенности строения и свойств.

Полимеры - это высокомолекулярные вещества, молекулы которых состоят из повторяющихся структурных элементов - звеньев, соединенных в цепочки химическими связями, в количестве, достаточном для возникновения специфических свойств. К специфическим свойствам следует отнести следующие способности: способность к значительным механическим обратимым высокоэластическим деформациям; к образованию анизотропных структур; к образованию высоковязких растворов при взаимодействии с растворителем; к резкому изменению свойств при добавлении ничтожных добавок низкомолекулярных веществ.

Приведенные физико-химические особенности можно объяснить исходя из представления о строении полимеров. Говоря о строении следует подразумевать элементный состав вещества, порядок связи атомов, природу связей, наличие межмолекулярных взаимодействий. Характерным для полимеров является наличие длинных цепных молекул с резким различием характера связей вдоль цепи и между цепями. Особенно следует отметить, что нет изолированных цепных молекул. Молекула полимера всегда находится во взаимодействии с окружающей средой, могущей иметь как полимерный характер (случай чистого полимера), так и характер обычной жидкости (разбавленные растворы полимеров). Поэтому для характеристики полимера не достаточно указания типа связей вдоль цепи - необходимо еще иметь сведения о природе межмолекулярного взаимодействия. Следует иметь в виду, что характерные свойства полимеров могут быть реализованы только тогда, когда связи вдоль цепи намного прочнее поперечных связей, образующихся вследствие межмолекулярного взаимодействия любого происхождения. Именно в этом и состоит основная особенность строения полимерных тел. Поэтому можно утверждать, что весь комплекс аномальных свойств полимеров определяется наличием линейных цепных молекул с относительно слабым межмолекулярным взаимодействием. Разветвление этих молекул или соединение их в сетку вносит некоторые изменения в комплекс свойств, но не меняет положения дел по существу до тех пор, пока остаются достаточно длинные цепные линейные отрезки. Напротив, утрата цепного строения молекул при образовании из них глобул или густых сеток приводит к полной утрате всего комплекса характерных для полимеров свойств.

Следствием вышеуказанного является возникновение гибкости цепной молекулы. Она заключается в её способность изменять форму под влиянием теплового движения звеньев или внешнего поля, в которое помещен полимер. Это свойство связано с внутренним вращением отдельных частей молекулы относительно друг друга. В реальных молекулах полимеров валентные углы имеют вполне определённую величину, а звенья расположены не произвольно, и положение каждого последующего звена оказывается зависимым от положения предыдущего.

Полимеры, у которых наблюдаются достаточно интенсивные крутильные колебания, называются гибкоцепными, а полимеры, у которых повороты одной части цепи относительно другой затруднены - жесткоцепными.

Значит, молекулы могут вращаться и изменять своё строение без разрыва химических связей, образуя различные конформации, под которыми понимают различные пространственные формы молекулы, возникающие при изменении относительной ориентации отдельных её частей в результате внутреннего вращения атомов или групп атомов вокруг простых связей, изгиба связей и др.

Таким образом: полимеры - химические соединения с высокой мол. массой (от нескольких тысяч до многих миллионов), молекулы которых (макромо­лекулы) состоят из большого числа повто­ряющихся группировок (мономерных звеньев). Атомы, входящие в состав мак­ромолекул, соединены друг с другом силами главных и (или) координационных валентностей.

2. Классификация полимеров.

По происхождению полимеры делятся на природные (биополимеры), например белки, нуклеиновые кислоты, смолы природные, и синтети­ческие, например полиэтилен, полипропилен, феноло-формальдегидные смолы. Атомы или атомные группы могут распо­лагаться в макромолекуле в виде: откры­той цепи или вытянутой в линию после­довательности циклов (линейные полимеры, например каучук натуральный); цепи с разветвлением (разветвленные полимеры, например амилопектин), трехмерной сетки (сшитые полимеры, например отверждённые эпоксидные смолы). Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами (например поливинилхлорид, поликапроамид, целлюлоза).

Макромолекулы одного и того же хи­мического состава могут быть построены из звеньев различной пространственной конфигура­ции. Если макромолекулы состоят из оди­наковых стереоизомеров или из различ­ных стереоизомеров, чередующихся в цепи в определенной периодичности, полимеры называются стереорегулярными.

Полимеры, макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами. Сополиме­ры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блоксополимерами. К внутренним (неконцевым) звеньям макромолекулы одного химического строения могут быть присое­динены одна или несколько цепей дру­гого строения. Такие сополимеры называются привитыми.

Полимеры, в которых каждый или некоторые сте­реоизомеры звена образуют достаточно длинные непрерывные последовательно­сти, сменяющие друг друга в пределах одной макромолекулы, называются стереоблоксополимерами.

В зависимости от состава основной (главной) цепи полимеры, делят на: гетероцепные, в основной цепи которых со­держатся атомы различных элементов, чаще всего углерода, азота, кремния, фосфора, и гомоцепные, основные цепи которых построены из одинаковых атомов. Из гомоцепных полимеров наиболее рас­пространены карбоцепные полимеры, главные цепи которых состоят только из атомов углерода, например полиэтилен, полиметилметакрилат, политетрафторзтилен. Примеры гетероцепных полимеров - полиэфиры (полиэтилентерефталат, поликарбонаты), полиамиды, мочевино-формальдегидные смолы, бел­ки, некоторые кремнийорганические поли­меры. Полимеры, макромолекулы которых наряду с углеводородными группами содержат атомы неорганогенных элементов, называются элементоорганическими. Отдельную группу полимеров образуют неорганические по­лимеры, например пластическая сера, полифосфонитрилхлорид.

3. Свойства полимеров.

Линейные полимеры обладают специфическим комп­лексом физико-химических и механических свойств. Важнейшие из этих свойств: способность образовывать высокопрочные анизотроп­ные высокоориентированные волокна и пленки, способность к большим, дли­тельно развивающимся обратимым дефор­мациям; способность в высокоэластичном со­стоянии набухать перед растворением; высокая вязкость растворов. Этот комп­лекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гиб­костью макромолекул. При переходе от линейных цепей к разветвленным, ред­ким трехмерным сеткам и, наконец, к густым сетчатым структурам этот комп­лекс свойств становится всё менее выра­женным. Сильно сшитые полимеры нераство­римы, неплавки и неспособны к высоко­эластичным деформациям.

Полимеры могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации - регулярность достаточно длинных участков макромоле­кулы. В кристаллических полимерах возможно возник­новение разнообразных надмолекулярных структур (фибрилл, сферолитов, монокристаллов, тип которых во мно­гом определяет свойства полимерного материала. Надмолекулярные структуры в незакристаллизованных (аморфных) полимерах менее выражены, чем в кристаллических.

Незакристаллизованные полимеры могут нахо­диться в трех физических состояниях: стекло­образном, высокоэластичном и вязкотекучем. Полимеры с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластичное состояние называются эластомерами, с высокой - пласти­ками. В зависимости от химического состава, строения и взаимного расположения мак­ромолекул свойства полимеры могут меняться в очень широких пределах. Так, 1,4.-цисполибутадиен, построенный из гибких углеводородных цепей, при температуре около 20 °С - эластичный материал, который при температуре -60 °Ñ переходит в стеклообраз­ное состояние; полиметилметакрилат, построенный из более жестких цепей, при температуре около 20 °Ñ - твердый стеклооб­разный продукт, переходящий в высоко­эластичное состояние лишь при 100 °Ñ. Целлюлоза - полимер с очень жесткими цепями, соединенными межмолекуляр­ными водородными связями, вообще не может существовать в высокоэластичном состоянии до температуры ее разложения. Большие различия в свойствах полимеров могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики.

Полимеры могут вступать в следующие основные типы реакций: образование химических свя­зей между макромолекулами (так называемое сши­вание), например при вулканизации кау­чуков, дублении кожи; распад макромо­лекул на отдельные, более короткие фраг­менты, реак­ции боковых функциональных групп полимеров с низкомолекулярными веществами, не затрагивающие основную цепь (так называемые полимераналогичные пре­вращения); внутримолекулярные реакции, протекающие между функциональными группами одной макромоле­кулы, например внутримолекулярная циклизация. Сшивание часто протекает одно­временно с деструкцией. Примером полимераналогичных превращений может слу­жить омыление поливтилацетата, при­водящее к образованию поливинилового спирта. Скорость реакций полимеров с низкомо­лекулярными веществами часто лимити­руется скоростью диффузии последних в фазу полимера. Наиболее явно это проявля­ется в случае сшитых полимеров. Скорость взаи­модействия макромолекул с низкомоле­кулярными веществами часто сущест­венно зависит от природы и расположения соседних звеньев относительно реагирую­щего звена. Это же относится и к внутри­молекулярным реакциям между функ­циональными группами, принадлежащи­ми одной цепи.

Некоторые свойства полимеров, например раствори­мость, способность к вязкому течению, стабильность, очень чувствительны к действию небольших количеств приме­сей или добавок, реагирующих с макро­молекулами. Так, чтобы превратить ли­нейный полимер из растворимого в полностью нерастворимый, достаточно образовать на одну макромолекулу 1-2 поперечные связи.

Важнейшие характеристики полимеров - химический состав, молекулярная масса и моле­кулярно-массовое распределение, сте­пень разветвленности и гибкости макро­молекул, стереорегулярность и другие. Свойства полимеров существенно зависят от этих характеристик.

4. Изготовление полимеров.

Природные полимеры образуются в процессе биосинтеза в клетках живых организмов. С помощью экстракции, фракционного осаждения и других методов они могут быть выделены из раститель­ного и животного сырья. Синтетические полимеры получают полимеризацией и поликонден­сацией. Карбоцепные полимеры обычно синте­зируют полимеризацией мономеров с од­ной или несколькими кратными углеродными связями или мономеров, содержащих неустойчивые карбоциклические группировки (например, из циклопропана и его производных), Гетероцепные полимеры получают поликонденсацией, а также полимеризацией мономеров, содержащих кратные связи углеродоэлемента (например, С=О, С=N, N=С=О) или не­прочные гетероциклические группировки.

5. Использование полимеров.

Сегодня можно говорить по меньшей мере о четырех основных направлениях использования полимерных ма­териалов в сельском хозяйстве. И в отечественной и в мировой практике первое место принадлежит пленкам. Благодаря применению мульчирующей перфорированной пленки на полях урожайность некоторых культур повы­шается до 30%, а сроки созревания ускоряются на 10-14 дней. Использование полиэтиленовой пленки для гид­роизоляции создаваемых водохранилищ обеспечивает существенное снижение потерь запасаемой влаги. Укры­тие пленкой сенажа, силоса, грубых кормов обеспечива­ет их лучшую сохранность даже в неблагоприятн ых по­годных условиях. Но главная область использования пленочных полимерных мате риалов в се льском хозяйст­ве - строительство и эксплуатация пле ночных те плиц . В настоящее время стало технически возмож ным выпу­скать полотнища пленки шириной до 1 6 м, а это позво­ляе т строить пленочные теплицы шириной в основан ии до 7,5 и длиной до 200 м. В таких теплицах можно все се льскохозя йстве нные работы проводи ть механизирован­но; более того, эти теплицы позволяют выращивать про­дукцию круглогодично. В холодное время теплицы обо­греваются опять-таки с помощью полимерных труб, за­ложенных в почву на глубину 60-7 0 см.

С точки зрения химической структуры полиме ров, испол ьзуемых в тепличных хозяйствах такого рода, можно отме тить преимущественное использование полиэтилена , непластифицированного поливинилхлорида и в мен ьше й ме ре пол иамидов. Полиэтиленовые пле нки отличаются лучшей светопроницаемостью, лучшими прочностными свойствами, но худшей погодоустойчивостью и сравнительно высокими теплопотерями. Они могут исправно служить лишь 1-2 сезона. Полиамидные и другие пленки пока применяются сравнительно редко.

Другая область широкого применения полимерных материалов в сельском хозяйстве - мелиорация. Тут и разнообразные формы труб и шлангов для полива, особенно для самого прогрессивного в настоящее время капельного орошения; тут и перфорированные пластмассовые трубы для дренажа. Интересно отметить, что срок службы пластмассовых труб в системах дренажа, напри мер, в республиках Прибалтики в 3-4 раза дольше, чем соответствующих керамических труб. Вдобавок использование пластмассовых труб, особенно из гофрированного поливинилхлорида, позволяет почти полностью исключить ручной труд при прокладке дренажных систем.

Два остальных главных направления использования полимерных материалов в сельском хозяйстве - строительство, особенно животноводческих помещений, и машиностроение. Начиная с 1975 года весь крупный рогатый скот, а также овцы и козы в государственных хозяйствах Чехословакии должны носить в ушах свое­образные сережки - пластмассовые таблички с указа­нием основных данных о животных. Эта новая форма регистрации животных должна заменить при менявшееся ранее клеймение, что признано специалистами негигие­ничным. Миллионы пластмассовых табличек должны вы­пускать артели местной промышленности.

Комплексную задачу очистки сточных вод целлю­лозно-бумажного производства и одновременного произ­водства кормов для животноводства решили финские ученые. Специальную культуру микробов выращивают на отработанных сульфитных щелоках в специальных ферментаторах при 38° С, одновременно добавляя туда аммиак. Выход кормового белка составляет 50-55%; его с аппетитом поедают свиньи и домашняя птица.

Традиционно принято многие спортивные мероприя­тия проводить на площадках с травяным покрытием. Футбол, теннис, крокет... К сожалению, динамичное раз­витие спорта, пиковые нагрузки у ворот или у сетки при­водят к тому, что трава не успевает подрасти от одного состязания до другого. И никакие ухищрения садовников не могут с этим справиться. Можно, конечно, прово­дить аналогичные состязания на площадках, скажем, с асфальтовым покрытием, но как же быть с традицион­ными видами спорта? На помощь пришли синтетические материалы. Полиамидную пленку толщиной 1/40 мм (25 мкм) нарезают на полоски шириной 1,27 мм, вытя­гивают их, извивают, а затем переплетают так, чтобы получить легкую объемную массу, имитирующую траву. Во избежание пожара к полимеру загодя добавля­ют огнезащитные средства, а чтобы из-под ног у спортсменов не посыпались электрическое искры - антиста­тик. Коврики из синтетической травы наклеивают на подготовленное основание - и вот зам готов травяной корт или футбольное поле, или иная спортивная пло­щадка. А по мере износа отдельные участки игрового поля можно заменять новыми ковриками, изготовленны­ми по той же технологии и того же зеленого цвета.

Однако - главный потребитель чуть ли не всех материалов, производимых в нашей стране, в том числе и полимеров это промышленность. Использование полимерных материалов в машиностроении растет такими темпами, какие не знают прецедента во всей человеческой истории. К примеру, в 1976 1. маши­ностроение нашей страны потребило 800000 т пласт масс, а в 1960 г. - всего 116 000 т. При этом интересно отметить, что еще десять лет назад в машиностроение направлялось 37—38% всех выпускающихся в нашей стране пластмасс, а 1980 г. доля машиностроения в использовании пластмасс снизилась до 28%. И дело тут не в том, что могла бы снизится потребность, а в том, что другие отрасли народного хозяйства стали при­менять полимерные материалы в сельском хозяйстве, в строительстве, в легкой и пищевой промышленности еще более интенсивно.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 1318
Бесплатно скачать Реферат: Строение и свойства полимеров