Реферат: Структура будівельних матеріалів Основні технічні властивості

Пористість показує ступінь заповнення об’єму матеріалу порами:

Для сипучих матеріалів по наведеній вище формулі, де ρ0 – насипна густина, можна знайти міжзернову порожнистість.

Пористість – найважливіший показник структури матеріалів, з нею тісно зв’язані їхні технічні властивості. При цьому значення має не тільки величина загальної пористості, але і будова порового простору, наявність відкритих і закритих, капілярних і некапілярних пор і т.д. Наприклад, морозостійкість бетону при збільшенні об'єму відкритих, заповнюваних водою пор зменшується, а при збільшенні закритих, навпаки, зростає.

Капілярні пори на відміну від некапілярних заповнюються водою, що піднімається за рахунок тиску, який викликаний поверхневим натягом рідини. Від обсягу капілярних пор залежать водопоглинання, морозостійкість, водонепроникність і ряд інших властивостей матеріалів.

Спосіб визначення пористості залежить від її виду і розмірів пор. По приведеній вище формулі знаходять загальну, пористість, а відкриту (уявну) пористість знаходять по водонасиченню матеріалу.

Гідрофізичні властивості. Поводження матеріалів у конструкціях, які підлягають зволоженню, залежить від їхньої здатності змочуватися водою і поглинати її, змінювати при зволоженні механічні властивості і пропускати воду під тиском. Кількість води, що міститься в порах і на поверхні матеріалу, виражена у відсотках стосовно його маси в сухому стані, називають вологістю.

Змочуваність водою, чи гідрофільність матеріалу характеризується ступенем розтікання краплі води на його поверхні. Кількісно вона визначається крайовим кутом, утвореним дотичною до поверхні краплі з поверхнею твердого тіла, чи його косинусом. Для гідрофільних матеріалів крайовий кут гострий. Добре змочуються водою матеріали з речовин з вираженим полярним зв’язком молекул – природні і штучні кам’яні матеріали, скло й ін. Надати матеріалам водовідштовхувальні властивості можна гідрофобізацією, тобто створенням на їхній поверхні адсорбційного шару поверхнево-активних речовин (ПАР). Таким способом одержують гідрофобний цемент, гідрофобні покриття на ряді матеріалів. Молекули ПАР при гідрофобізації, адсорбуючись на поверхні, орієнтуються таким чином, що їхні полярні групи звернені до поверхні матеріалу, а вуглеводневі ланцюги – у повітря. За допомогою спеціальних ПАР можна домогтися і зворотного ефекту – гідрофілізації гідрофобних матеріалів.

Гігроскопічність – здатність матеріалу поглинати водяні пари з повітря в результаті адсорбції. Кількість адсорбованої води росте з підвищенням відносної вологості, зниженням температури і збільшенням тиску. Гігроскопічність може супроводжуватися утворенням нових сполук – гідратів і кристалогідратів. Так, при поглинанні води оксидом кальцію утвориться гідроксид. У мікрокапілярах пористих матеріалів з радіусом менш 10–5 см пари води конденсуються. Відношення кількості води, поглиненої матеріалом, до загальної кількості цього матеріалу називається гігроскопічною вологістю. Максимальна гігроскопічна вологість різна для різноманітних пористих матеріалів: 4…9 % – для піску, 14…28 – для сосни, 9…25 % – для фіброліту. Вона росте з підвищенням капілярної пористості і зменшенням радіуса капілярів. Гігроскопічність змінює інші властивості матеріалів, приводить до втрати активності цементів, викликає зміну густини, розмірів і міцності деревини, збільшує теплопровідність.

Для капілярно-пористих матеріалів характерна здатність зволожуватися за рахунок підйому і переміщення води під дією капілярного тиску (капілярне всмоктування). З нею зв’язаний підйом води в матеріалах, прямо пропорційний косинусу крайового кута змочування, тобто ступеню гідрофільності, і протилежно пропорційний радіусу капілярів. Капілярне всмоктування мінералізованих вод може супроводжуватися відкладенням у порах солей (сольова корозія). Капілярне всмоктування використовується для просочення пористих матеріалів, наприклад, просочення бітумом залізобетонних конструкцій.

Водопоглинання – здатність матеріалів поглинати й утримувати воду. Розрізняють водопоглинення по масі Wm і по об’єму W0 :

де m1 , m2 – маси сухого і насиченого водою матеріалу.

Водопоглинання по об’єму показує ступінь заповнення об’єму матеріалу водою, тобто відкриту уявну пористість. Зміна водопоглинання може вказувати на зміну й інших властивостей матеріалів, наприклад міцності, морозостійкості, хімічної стійкості, тому даний показник часто нормується. Так, глиняна цегла повинна мати водопоглинання не менш 6 чи 8 % (у залежності від марки), а силікатна – не більш 16 % (14 % – лицьова). Для звичайних торф’яних плит водопоглинання повинне бути не більш 180 %, а водостійких – 50 % і т.д. Водопоглинання визначається витримуванням зразків у воді при нормальній температурі чи при кип’ятінні протягом визначеного часу.

При насиченні матеріалу водою міцність його знижується в результаті розчинення контактів зростання кристалів, розклинюючого ефекту адсорбційних водяних шарів, хімічної взаємодії води з окремими компонентами, набрякання глинистих матеріалів і інших процесів. Здатність матеріалів зберігати міцність при насиченні водою називається водостійкістю. Показником водостійкості служить коефіцієнт розм’якшення :

де Rн.в – міцність матеріалу, насиченого водою; Rс – міцність сухого матеріалу.

Коефіцієнт розм’якшення наближається до нуля для глинистих невипалених матеріалів і до одиниці – для металів, скла, полімерів. Для водостійких матеріалів Кр = 0,75…0,8. Підвищення його досягається гідрофобізацією, а також технологічними прийомами, що сприяють зниженню розчинності і пористості матеріалів. Наприклад, коефіцієнт розм’якшення гіпсових виробів можна підвищити майже в 2,5 рази (від 0,3 до 0,7), замінивши будівельний гіпс на змішане гіпсоцементнопуцоланове в’яжуче.

Стійкість матеріалу, насиченого водою, до поперемінного заморожування і відтаювання називається морозостійкістю. Морозостійкість обумовлена опором матеріалів високому тиску, що виникає в їхніх порах при заморожуванні води. Кристалізація льоду супроводжується збільшенням об'єму приблизно на 8 % і розвитком тиску до 200 МПа. При чергуванні циклів заморожування і відтаювання в матеріалах накопичуються залишкові деформації, що приводять до руйнування (рис.2.2). Розходження коефіцієнтів термічного розширення компонентів, що входять у матеріали, також приводить до напруженого стану. Показником морозостійкості є число циклів (для деяких матеріалів – від'ємна температура), що витримують зразки при припустимому ступені руйнування. Для більшості будівельних матеріалів після іспиту їх на морозостійкість зниження міцності допускається не більш 25 %, а втрати маси – 5 %. Морозостійкість залежить від складу, пористості і структури порового простору; вона знижується зі зменшенням водостійкості і ростом водопоглинення матеріалів.

Для зниження тиску льоду ефективне утворення в матеріалі замкнутих повітряних пор, що виконують роль амортизаторів.

Випробування матеріалів на морозостійкість ведуть у морозильних камерах звичайно при –15...–18 °С, коли в більшості капілярів вода переходить у лід. Подальше зниження температури веде до істотного зменшення морозостійкості, що пояснюється залученням у процес руйнування усе більш тонких капілярів.

При роботі пористого матеріалу в умовах визначеного тиску води спостерігається її фільтрація. В залежності від структури порового простору можливі в’язкісний, капілярний чи дифузійний переноси води.

При в’язкісному переносі вода переміщається тільки у вигляді рідини, при капілярному вона може переноситися й у вигляді пари, а при дифузійному – у вигляді окремих молекул. Здатність матеріалів не пропускати воду під тиском називають водонепроникністю. Практично водонепроникними вважаються матеріали, відносна щільність яких наближається до одиниці (метали, скло, полімери). Високу водонепроникність мають матеріали із замкненими порами, а також ті, що вміщують в основному мікрокапіляри (кераміка, тонкодисперсні глини й ін.). Порівняно низька водонепроникність характерна для матеріалів зі сполученими капілярами.

Водонепроникність матеріалів виміряється трьома методами: тиском води, що витримує зразок протягом заданого часу без появи ознак фільтрації; часом, необхідним для проходження заданого об'єму води при постійному тиску; кількістю води, яка просочилася протягом заданого часу при встановленому тиску. Найбільш розповсюджений перший метод. Він застосовується для оцінки водонепроникності бетону, рулонних гідроізоляційних матеріалів, асфальтових мастик і т.д.

Теплофізичні властивості. У цю групу входять властивості матеріалів, що характеризують їхнє відношення до зміни температури. Здатність матеріалу поглинати теплоту при нагріванні на 1 градус називають теплоємністю. Питома теплоємність (теплоємність одиниці маси матеріалу) знаходиться по формулі

де Q – кількість теплоти, кДж; m – маса, кг; t1 і t2 – температура до і після нагрівання, °С.

К-во Просмотров: 200
Бесплатно скачать Реферат: Структура будівельних матеріалів Основні технічні властивості