Реферат: Структура доказательства

Апагогическое косвенное доказательство (или доказательство «от противного») осуществляется путем установления ложности противоречащего тезису суждения. Этот метод часто используется в математике.

Пусть а — тезис или теорема, которую надо доказать. Предпо­лагаем от противного, что а ложно, т. е. истинно не-а (или о). Из допущения а выводим следствия, которые противоречат действи­тельности или ранее доказанным теоремам. Имеем a v а, при этом а — ложно, значит, истинно его отрицание, т. е. а, которое по закону двузначной классической логики (а -» а) дает а. Значит, истинно а, что и требовалось доказать.

Следует заметить, что в конструктивной логике формула п -» а не является выводимой, поэтому в этой логике и в конструктивной математике ею пользоваться в доказательствах нельзя. Закон ис­ключенного третьего здесь также «отвергается» (не является выво­димой формулой), поэтому косвенные доказательства здесь не при­меняются.

Примеров доказательства «от противного» очень много в

Журнал «Бурда». М., 1989. № 1. С. 2.

школьном курсе математики. Так, например, доказывается теорема о том, что из точки, лежащей вне прямой, на эту прямую можно опустить лишь один перпендикуляр. Методом «от противного» доказывается и следующая теорема: «Если две прямые перпендикулярны к одной и той же плоскости, то они параллельны». Доказательство этой теоремы прямо начинается словами: «Предположим противное, т. е. что прямые АВ и СД не параллельны».

Разделительное доказательство (методом исключения). Анти­тезис является одним из членов разделительного суждения, в котором должны быть обязательно перечислены все возможные альтернативы, например:

Преступление мог совершить либо Л, либо В, либо С. Доказано, что не совершали преступление ни А, ни В. Преступление совершил С.

Истинность тезиса устанавливается путем последовательного доказательства ложности всех членов разделительного суждения, кроме одного.

Здесь применяется структура отрицающе-утверждающего мо­дуса разделительно-категорического силлогизма. Заключение будет истинным, если в разделительном суждении предусмотрены все возможные случаи (альтернативы), т. е. если оно является закрытым (полным) дизъюнктивным суждением:

avfevcvcf; а л ? л с d

Как отмечалось ранее, в этом модусе союз «или» может употребляться и как строгая дизъюнкция (v), и как нестрогая дизъюнкция (v), поэтому ему отвечает также схема:

а v и v с v rf; а л 6 л с d.

§ 3. Понятие опровержения

Опровержение — логическая операция установления ложности или необоснованности ранее выдвинутого тезиса.

Опровержение должно показать, что: 1) неправильно построено само доказательство (аргументы или демонстрация); 2) выдвину­тый тезис ложен или не доказан.

Суждение, которое надо опровергнуть, называется тезисом опровержения. Суждения, с помощью которых опровергается тезис, называются аргументами опровержения.

Существуют три способа опровержения: I) опровержение те­зиса (прямое и косвенное); II) критика аргументов; III) выявле­ние несостоятельности демонстрации.

I. Опровержение тезиса (прямое и косвенное)

Опровержение тезиса осуществляется с помощью следующих трех способов (первый — прямой способ, второй и третий — косвенные способы).

1. Опровержение фактами — самый верный и успешный способ опровержения. Ранее говорилось о роли подбора фактов, о методике оперирования ими; все это должно учитываться и в процессе опровержения фактами, противоречащими тезису. Долж­ны быть приведены действительные события, явления, статисти­ческие данные, которые противоречат тезису, т. е. опровергаемому суждению. Например, чтобы опровергнуть тезис «На Венере возможна органическая жизнь», достаточно привести такие дан­ные: температура на поверхности Венеры 470—480° С, а давле­ние — 95—97 атмосфер. Эти данные свидетельствуют о том, что жизнь на Венере невозможна,

2. Устанавливается ложность (или противоречивость) след­ствий, вытекающих из тезиса. Доказывается, что из данного тезиса вытекают следствия, противоречащие истине. Этот прием называется «сведение к абсурду» (reductio ad absurdum). Посту­пают так: опровергаемый тезис временно признается истинным, но затем из него выводятся такие следствия, которые противоречат истине.

В классической двузначной логике (как уже отмечалось) метод «сведения к абсурду» выражается в виде формулы: а = а -» F,

где F — противоречие или ложь.

В более общей форме принцип «сведения (приведения) к абсурду» выражается такой формулой: (а - Ь) - ((а -» Ъ) - а).

3. Опровержение тезиса через доказательство антитезиса. По отношению к опровергаемому тезису (суждению а) выдвигается противоречащее ему суждение (т. е. не-а), и суждение не-а (антитезис) доказывается. Если антитезис истинен, то тезис ложен, и третьего не дано по закону исключенного третьего.

Например, надо опровергнуть широко распространенный тезис: » «Все собаки лают» (суждение А, общеутвердительное). Для

суждения А противоречащим будет суждение О —частноотрица-тельное: «Некоторые собаки не лают». Для доказательства по­следнего достаточно привести несколько примеров или хотя бы один пример: «Собаки у пигмеев никогца не лают»'. Итак, доказано суждение О. В силу закона исключенного третьего, если О — истинно, то А — ложно. Следовательно, тезис опровергнут.

II. Критика аргументов

К-во Просмотров: 612
Бесплатно скачать Реферат: Структура доказательства