Реферат: Структура системного анализа и моделирования процессов в техносфере

б) проблемно ориентированное описание;

в) теоретический системный анализ.

Совокупность только что указанных этапов с их элементами и взаимосвязями может рассматриваться как структура системного анализа и моделирования процессов в техносфере, основанная преимущественно на применении гибкой системной методологии прогнозирования и перераспределения техногенного риска.

Самым первым и довольно важным этапом системного исследования техносферы считается эмпирический системный анализ рассматриваемых там проблемных ситуаций с обеспечением безопасности техносферы. Он основывается на изучении требований и сборе статистических данных по аварийности и травматизму, выявлений несоответствий между желаемым и действительным состояниями исследуемых опасных процессов, определении состава существенных факторов - тех свойств человекомашинной системы, которые наиболее часто фигурируют в анализируемых данных.

В процессе осуществления рассматриваемого этапа широко используются различные способы сбора и преобразования статистических данных, направленные на повышение информативности изучаемых признаков или снижение их размерности. Наиболее предпочтительны для этого следующие: проверка статистических гипотез, регрессионные алгоритмы, дискриминантный и факторный анализы, кластер - процедуры.

Важность данного этапа состоит в его значимости для последующих рассуждений: в случае недобросовестности проведения эмпирического системного анализа возможны так называемые ошибки третьего рода - неверные выводы при ошибочных исходных предложениях. И наоборот, качественное проведение сбора и обработки статистических данных обеспечивает адекватность отображаемой реальности, необходимую для дальнейшего моделирования, поскольку любые эмпирические данные - следствие объективно существующих законов природы и общества.

Следующим (после эмпирического системного анализа) этапом служит, проблемно-ориентированное - описание объекта и цели моделирования - тех опасных техносферных процессов, которые могут сопровождаться появлением происшествий, а также выявление соответствующих закономерностей и оценка их параметров.

Этот этап обычно включает более четкое формулирование проблемной ситуации, идентификацию о связанной с ней человекомашинной системы, уточнение характера ее взаимодействия с внешней средой, определение цели предстоящего моделирования и системного анализа, выбор соответствующих показателей и критериев.

При этом подразумевается следующее:

а) выявление сущности противоречий - породивших факторов, а также организаций или лиц, заинтересованных в их ликвидации;

б) уточнение цели моделирования - определение необходима для этого изменений, соответствующих методов, показателей и критериев;

в) идентификация объекта - уточнение структуры, свойств и характера взаимодействия его элементов, определение учитываемых и игнорируемых факторов, а также параметров тех из них, которые наиболее существенны для появления и устранения происшествий.

Завершающий этап системного анализа и моделирования конкретных процессов в техносфере связан с проведением их теоретического системного анализа. Такое исследование должно быть направлено на уточнение представлений об условиях возникновения и предупреждения происшествий при функционировании человекомашинных систем. Основой для выявления подобных условий и использования соответствующих факторов могут служить принципы и закономерности поведения сложных систем, а также результаты, полученные при проведении эмпирического системного анализа аварийности и травматизма в техносфере.

Особое место при проведении теоретического системного анализа техносферы принадлежит моделированию процессов, связанных с возникновением там происшествий. Это обусловлено прежде всего неприемлемостью по этическим и экономическим соображениям экспериментального изучения тех аспектов, которые касаются жизни и здоровья людей, значительного ущерба материальным ценностям и природным ресурсам. В этих условиях только моделирование позволяет заблаговременно пополнить представления об условиях, закономерностях возникновения и предупреждения техногенных происшествий, компенсировать дефицит в соответствующих статистических данных.

Важным условием успешного завершения теоретического системного анализа опасных техносферных процессов является выявление объективных закономерностей возникновения техногенных происшествий и априорная оценка соответствующего риска. Подобный прогноз предполагает разработку моделей, пригодных для количественной оценки.

Перед тем как более подробно обосновать особенности формализации и моделирования исследуемых в техносфере категорий, рассмотрим один из способов представления информации, основанный на применении нечетких множеств и теории возможностей, покажем их связь с более привычными нам понятиями. Предметом соответствующей теории служат объекты с плохо определенными (нечеткими, размытыми) границами, а важными категориями лингвистически переменные, другие нечеткие величины и функции их принадлежности.

Уточним, что лингвистические, т. е. вербальные или словесные, вербальные используются для характеристики таких предметов или и их свойств, для которых переход от принадлежности к какому-то классу к непринадлежности наблюдается не скачкообразно, а непрерывно.

Функции же принадлежности лингвистических переменных представляют собой множества, количественно выражающие степень субъективного доверия к приведенным выше и другим им подобным высказываниям или совместимость их с более точными (количественными) признаками.

Можно показать определенную связь между отдельными понятиями теории возможностей и теории вероятностей, а также провести некоторые аналогии между ними. Так, понятие возможность обычно указывает на меру субъективной уверенности и рассматривается иногда как согласованное распределение уверенности - по Т. Байесу. Напротив, категория вероятность считающийся объективной мерой появления случайных событий, а ее значение могут быть статистически или экспериментально подтверждены.

Однако некоторые различия между понятиями теории возможностей и теории вероятностей не исключают выбора таких функций принадлежности, при которых маловероятное имеет и малую степень возможности появления. Это связано с тем, что функция принадлежности, например, может интерпретироваться в отдельных случаях как плотность вероятности случайной величины.

Просматривается определенная аналогия между некоторыми числовыми характеристиками рассмотренных распределений, например, между наибольшим значением лингвистической переменной или модальным значением нечеткого числа и модой случайной величины. Приведенные и другие числовые характеристики могут иногда рассматриваться как квантили тех их значений, которые соответствуют наиболее возможной и наиболее вероятной величинам рассматриваемых переменных.

Нетрудно видеть плодотворность использования указанного выше подхода к представлению данных при решении ряда практически важных задач системного анализа и синтеза безопасности для формализации нечетко определенных свойств человекомашинных систем, более корректного описания самих категорий опасность, безопасность и определения их количественных характеристик.

Под формализацией подразумевается упорядоченное и специальным образом организованное представление исследуемых человеко-машинных систем, их компонентов и процессов в техносфере. Под моделированием понимают использование созданных в результате формализации искусственных образований (моделей), имеющих идентичные оригиналу характеристики, в целях получения новых данных или знаний о нем. При этом такие сведения могут быть найдены в процессе качественного и количественного анализа исследованных моделей.

Выбор необходимых способов формализации и моделирования конкретных категорий определяется обычно природой объекта или процесса, целью их изучения и вытекающими из этого специфическими требованиями к языкам представления данных и описанию моделей. Учитывая разнообразие известных ныне методов формализации и моделирования, обоснуем требования к их выбору и укажем на особенности реализации таких методов для системного исследования интересующих процессов в техносфере.

Основная особенность формализации и моделирования процесса возникновения происшествий в техносфере вообще и в человекомашинных системах в частности состоит в представлении первого в виде событий и активностей (работ), а вторых - в виде совокупности элементов и связей между ними. В свою очередь, состояние каждой такой моделируемой категории описывается путем введения соответствующих переменных параметров, а также образуемых ими векторов и пространств, а процесс взаимодействия (функционирования) - изменением траектории в пространстве соответствующих состояний или изображением логически связанных наборов событий и активностей.

При формализации и моделировании обычно придерживаются ряда правил, главные из которых состоят в обеспечении необходимой информационной достаточности и рационального использования фазового пространства.

Из последних утверждений вытекает область применения формализации и моделирования. Эти методы невозможны или малоэффективны при отсутствии некоторого минимума существенной информации об исследуемых категориях и мало перспективны - в условиях ее полной определенности или возможности экспериментального получения.

При прогнозировании уровня потенциальной опасности техносферы наиболее часто формализуются и моделируются процессы возникновения и предупреждения аварийности и травматизма.

Однако, помимо данных процессов, иногда используется формализованное изображение самих человекомашинных систем, условий обеспечения безопасности их функционирования или решения других стоящих перед ними задач. Считается, что формальная модель объекта исследования задана, если определены цель и процедура его анализа, показатели и механизм коррекции функционирования, ограничения и взаимосвязи с окружением.

К-во Просмотров: 455
Бесплатно скачать Реферат: Структура системного анализа и моделирования процессов в техносфере