Реферат: Структурные уровни организации материи 2

Поэтому изумление успехами структурной химии было недолгим. Интенсивное развитие автомобилестроения, авиации, энергетики, приборостроения в первой половине XX в. выдвинуло новые требования к производству материалов. Необходимо было получить высокооктановое моторное топливо, специальные синтетические каучуки, пластмассы, высокостойкие изоляторы, жаропрочные органические и неорганические полимеры, полупроводники. Для получения этих материалов способ решения основной проблемы химии, основанный на учении о составе и структурных теориях, был явно недостаточен. Он не учитывал резких изменений свойств вещества в результате влияния температуры, давления, растворителей и многих других факторов, воздействующих на направление и скорость протекания химических процессов. Учет и использование этих факторов вывело химию на новый качественный уровень ее развития.

Высокомолекулярные соединения

(полимеры), характеризуются молекулы массой от нескольких тысяч до нескольких (иногда многих) миллионов. В состав молекул высокомолекулярных соединений (макромолекул) входят тысячи атомов, соединенных хим. связями. Любые атом или группа атомов, входящие в состав цепи полимера или олигомера, наз. составным звеном. Наименьшее составное звено, повторением которого м. б. описано строение регулярного (см. ниже) полимера, наз. составным повторяющимся звеном. Составное звено, которое образуется из одной молекулымономера при полимеризации, называется мономерным звеном (ранее иногда наз. элементарным звеном). Например, в полиэтилене [—СН2 СН2 —]n повторяющееся составное звено - СН2 , мономерное -СН2 СН2 .

Название линейного полимера образуют прибавлением приставки "поли" (в случае неорганич. полимеров -"катена-поли"): а) к названию составного повторяющегося звена, заключенному в скобки (систематич. названия); б) к названию мономера, из к-рого получен полимер (полусистематич. названия, которые ИЮПАК рекомендует использовать для обозначения наиболее часто применяемых полимеров). Название составного повторяющегося звена образуют по правилам номенклатуры химической. Например: (первыми указаны полусистематич. названия):

3. Структурные уровни организации жизни

Жизнь характеризуется диалектическим единством противоположностей: она одновременно целостна и дискретна. Органический мир представляет собой единое целое, так как составляет систему взаимосвязанных частей (существование одних организмов зависит от других), и в то же время дискретен, поскольку состоит из отдельных единиц — организмов, или особей. Каждый живой организм, в свою очередь, также дискретен, так как состоит из отдельных органов, тканей, клеток, но вместе с тем каждый из органов, обладая определенной автономностью, действует как часть целого. Каждая клетка состоит из органоидов, но функционирует как единое целое. Наследственная информация осуществляется генами, но ни один из генов вне всей совокупности не определяет развитие признака и т.д.

С дискретностью жизни связаны различные уровни организации органического мира, которые можно определить как дискретные состояния биологических систем, характеризуемых соподчи-ненностью, взаимосвязанностью и специфическими закономерностями. При этом каждый новый уровень обладает особыми свойствами и закономерностями прежнего, низшего уровня, поскольку любой организм, с одной стороны, состоит из подчиненных ему элементов, а с другой — сам является элементом, входящим в состав какой-то макробиологической системы.

На всех уровнях жизни проявляются такие ее атрибуты, как дискретность и целостность, структурная организация, обмен веществом, энергией и информацией. Существование жизни на более высоких уровнях организации подготавливается и определяется структурой низшего уровня; в частности, характер клеточного уровня определяется молекулярным и субклеточным, организменный — клеточным, тканевым уровнями и т.д.

Структурные уровни организации жизни чрезвычайно многообразны, но при этом основными являются молекулярный, клеточный, онтогенетический, популяционно-видовой, биоценотический, биогеоценотический и биосферный.

Молекулярно-генетический уровень

Молекулярно-генетический уровень жизни — это уровень функционирования биополимеров (белков, нуклеиновых кислот, полисахаридов) и других важных органических соединений, лежащих в основе процессов жизнедеятельности организмов. На этом уровне элементарной структурной единицей является ген, а носителем наследственной информации у всех живых организмов — молекула ДНК. Реализация наследственной информации осуществляется при участии молекул РНК. В связи с тем, что с молекулярными структурами связаны процессы хранения, изменения и реализации наследственной информации, данный уровень называют молекуляр-но-генетическим.

Важнейшими задачами биологии на этом уровне являются изучение механизмов передачи генной информации, наследственности и изменчивости, исследование эволюционных процессов, происхождения и сущности жизни.

Все живые организмы имеют в своем составе простые неорганические молекулы: азот, воду, двуокись углерода. Из них в ходе химической эволюции появились простые органические соединения, ставшие, в свою очередь, строительным материалом для более крупных молекул. Так появились макромолекулы — гигантские мо лекулы-полимеры, построенные из множества мономеров. Существуют три типа полимеров: полисахариды, белки и нуклеиновые кислоты. Мономерами для них соответственно служат моносахариды, аминокислоты и нуклеотиды.

Белки и нуклеиновые кислоты являются «информационными» молекулами, так как в их строении важную роль играет последовательность мономеров, которая может быть весьма разнообразной. Полисахариды (крахмал, гликоген, целлюлоза) играют роль источника энергии и строительного материала для синтеза более крупных молекул.

Белки — это макромолекулы, представляющие собой очень длинные цепи из аминокислот — органических (карбоновых) кислот, содержащих, как правило, одну или две аминогруппы (—NH2 ).

В растворах аминокислоты способны проявлять свойства как кислот, так и оснований. Это делает их своеобразным буфером на пути опасных физико-химических изменений. В живых клетках и тканях встречается свыше 170 аминокислот, однако в состав белков их входит только 20. Именно последовательность аминокислот, соединенных друг с другом пептидными связями1 , образует первичную структуру белков. На долю белков приходится свыше 50% общей сухой массы клеток.

Большинство белков выполняет функцию катализаторов (ферментов). В их пространственной структуре есть активные центры в виде углублений определенной формы. В такие центры попадают молекулы, превращение которых катализируется данным белком. Кроме того, белки играют роль переносчиков; например, гемоглобин переносит кислород от легких к тканям. Мышечные сокращения и внутриклеточные движения — результат взаимодействия молекул белков, функция которых заключается в координации движения. Функцией белков-антител является защита организма от вирусов, бактерий и т.д. Активность нервной системы зависит от белков, с помощью которых собирается и хранится информация из окружающей среды. Белки, называемые гормонами, управляют ростом клеток и их активностью.

Нуклеиновые кислоты. Процессы жизнедеятельности живых организмов определяет взаимодействие двухвидов макромолекул — белков и ДНК. Генетическая информация организма хранится в молекулах ДНК, которая служит носителем наследственной информации для следующего поколения и определяет биосинтез белков, контролирующих почти все биологические процессы. Поэтому нук леиновым кислотам принадлежит такое же важное место в организме, как и белкам.

Как белки, так и нуклеиновые кислоты обладают одним очень важным свойством — молекулярной дисимметрией (асимметрией), или молекулярной хиральностью. Это свойство жизни было открыто в 40—50-е гг. XIX в. Л. Пастером в ходе исследования строения кристаллов веществ биологического происхождения — солей виноградной кислоты. В своих опытах Пастер обнаружил, что не только кристаллы, но и их водные растворы способны отклонять поляризованный луч света, т.е. являются оптически активными. Позже они получили название оптических изомеров. У растворов веществ небиологического происхождения данное свойство отсутствует, строение их молекул симметрично.

Сегодня идеи Пастера подтверждены, и считается доказанным, что молекулярная хиральность (от греч. cheir — рука) присуща только живой материи и является ее неотъемлемым свойством. Вещество неживого происхождения симметрично в том смысле, что молекул, поляризующих свет влево и вправо, в нем всегда поровну. А в веществе биологического происхождения всегда присутствует отклонение от этого баланса. Белки построены из аминокислот, поляризующих свет только влево (L-конфигурация). Нуклеиновые кислоты состоят из Сахаров, поляризующих свет только вправо (D-конфигурация). Таким образом, хиральность заключается в асимметрии молекул, их несовместимости со своим зеркальным отражением, как у правой и левой руки, что и дало современное название этому свойству. Интересно отметить, что если бы человек вдруг превратился в свое зеркальное отражение, то с его организмом все было бы нормально до тех пор, пока он не стал бы есть пищу растительного или животного происхождения, которую он просто не смог бы переварить.

Нуклеиновые кислоты — это сложные органические соединения, представляющие собой фосфорсодержащие биополимеры (поли-нуклеотиды).

Существует два типа нуклеиновых кислот — дезоксирибонук-леиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). Свое название нуклеиновые кислоты (от лат. nucleus — ядро) получили из-за того, что впервые были выделены из ядер лейкоцитов еще во второй половине XIX в. швейцарским биохимиком Ф. Мишером. Позже было обнаружено, что нуклеиновые кислоты могут находиться не только в ядре, но и в цитоплазме и ее органоидах. Молекулы ДНК вместе с белками-гистонами образуют вещество хромосом.

В середине XX в. американский биохимик Дж. Уотсон и английский биофизик Ф. Крик раскрыли структуру молекулы ДНК. Рентгеноструктурные исследования показали, что ДНК состоит из двух цепей, закрученных в двойную спираль. Роль остовов цепей играют сахарофосфатные группировки, а перемычками служат основания пуринов и пиримидинов. Каждая перемычка образована двумя основаниями, присоединенными к двум противоположным цепям, причем, если у одного основания одно кольцо, то у другого — два. Таким образом, образуются комплементарные пары: А-Т и Г-Ц. Это значит, что последовательность оснований одной цепи однозначно определяет последовательность оснований в другой, комплементарной ей цепи молекулы.

Ген — это участок молекулы ДНК или РНК (у некоторых вирусов). РНК содержит 4—6 тысяч отдельных нуклеотидов, ДНК — 10—25 тысяч. Если бы можно было вытянуть ДНК одной человеческой клетки в непрерывную нить, то ее длина составила бы 91 см.

И все же рождение молекулярной генетики произошло несколько раньше, когда американцы Дж. Бидл и Э. Тэйтум установили прямую связь между состоянием генов (ДНК) и синтезом ферментов (белков). Именно тогда появилось знаменитое высказывание: «один ген — один белок». Позже было выяснено, что основной функцией генов является кодирование синтеза белка. После этого ученые сконцентрировали свое внимание на вопросе, как записана генетическая программа и как она реализуется в клетке. Для этого нужно было выяснить, как всего четыре основания могут кодировать порядок расположения в молекулах белка целых двадцати аминокислот. Основной вклад в решение этой проблемы внес знаменитый физик-теоретик Г. Гамов в середине 1950-х гг.

По его предположению, для кодирования одной аминокислоты используется сочетание из трех нуклеотидов ДНК. Эта элементарная единица наследственности, кодирующая одну аминокислоту, получила название кодона. В 1

К-во Просмотров: 612
Бесплатно скачать Реферат: Структурные уровни организации материи 2