Реферат: Структурные уровни организации материи концепции микро- макро- и мегамиров

Представления А. Эйнштейна о квантах света, послужившие в 1913 г. отправным пунктом теории Н. Бора, через 10 лет снова оказали плодотворное воздействие на развитие атомной физики. Они привели к идее о "волнах материи" и тем самым заложили основу новой стадии развития квинтовой теории.

В 1924 г. произошло одно из величайших событий в исто­рии физики: французский физик Л. де Бройль выдвинул идею о волновых свойствах материи. В своей работе "Свет и материя" он писал о необходимости использовать волновые и корпус­кулярные представления не только в соответствии с учением А. Эйнштейна в теории света, но также и в теории материи.

Л. де Бройль утверждал, что волновые свойства, наряду с корпускулярными, присущи всем видам материи: электронам, протонам, атомам, молекулам и даже макроскопическим телам.

В 1926 г. австрийский физик Э. Шредингер нашел матема­тическое уравнение, определяющее поведение волн материи, так называемое уравнение Шредингера. Английский физик П. Дирак обобщил его.

Смелая мысль Л. де Бройля о всеобщем "дуализме" частицы и волны позволила построить теорию, с помощью которой можно было охватить свойства материи и света в их единстве. Кванты света становились при этом особым моментом всеоб­щего строения микромира.

Волны материи, которые первоначально представлялись как наглядно-реальные волновые процессы по типу волн акустики, приняли абстрактно-математический облик и получили благо­даря немецкому физику М. Борну символическое значение как "волны вероятности".

Однако гипотеза де Бройля нуждалась в опытном подтвер­ждении. Наиболее убедительным свидетельством существова­ния волновых свойств материи стало обнаружение в 1927 г. ди­фракции электронов американскими физиками К. Дэвисоном и Л. Джермером.

Корпускулярно-волновой дуализм в современной физике стал всеобщим. Любой материальный объект характеризуется нали­чием как корпускулярных, так и волновых свойств.

Тот факт, что один и тот же объект проявляется и как час­тица и как волна, разрушал традиционные представления. Форма частицы подразумевает сущность, заключенную в малом объеме или в конечной области пространства, тогда как волна распространяется по его огромным областям. В квантовой фи­зике эти два описания реальности являются взаимоисключаю­щими, но равно необходимыми для того, чтобы полностью описать рассматриваемые явления.

Квантово-механическое описание микромира основывается на соотношении неопределенностей, установленном немецким физи­ком В. Гейзенбергом , и принципе дополнительности Н. Бора.

В своей книге "Физика атомного ядра" В. Гейзенберг раскрывает со­держание соотношения неопределенностей. Он пишет, что ни­ когда нельзя одновременно точно знать оба параметра — коорди­нату и скорость . Никогда нельзя одновременно знать, где нахо­дится частица, как быстро и в каком направлении она движет­ся. Если ставится эксперимент, который точно показывает, где частица находится в данный момент, то движение нарушается в такой степени, что частицу после этого невозможно найти. И наоборот, при точном измерении скорости нельзя определить место расположения частицы.

С точки зрения классической механики, соотношение не­определенностей представляется абсурдом. Чтобы лучше оце­нить создавшееся положение, нужно иметь в виду, что мы, лю­ди, живем в макромире и, в принципе, не можем построить на­глядную модель, которая была бы адекватна микромиру. Соотно­шение неопределенностей есть выражение невозможности на­блюдать микромир, не нарушая его. Любая попытка дать чет­кую картину микрофизических процессов должна опираться либо на корпускулярное, либо на волновое толкование.

Фундаментальным принципом квантовой механики, наряду с соотношением неопределенностей, является принцип допол­ нительности , которому Н.Бор дал следующую формулировку "Понятие частицы и волны дополняют друг друга и в то же время противоречат друг другу, они являются дополняющими картинами происходящего".

С теоретической точки зрения, микрообъекты, для которых существенным является квант действия М. Планка, не могут, рассматриваться так же, как объекты макромира, ведь для них планковская константа h из-за ее малой величины не имеет, значения. В микромире корпускулярная и волновая картин сами по себе не являются достаточными, как в мире больших тел. Обе "картины" законны, и противоречие между ними снять нельзя. Поэтому корпускулярная и волновая картины должны дополнять одна другую, т.е. быть комплементарными . Только при учете, обоих аспектов можно получить общую картину микромира.

Согласно современным представлениям, структура элемен­тарных частиц описывается посредством непрерывно возни­кающих и снова распадающихся "виртуальных" частиц . Напри­мер, мезон строится из виртуального нуклона и антинуклона, которые в процессе аннигиляции (лат. annihilatio , букв, уничто­жение) непрерывно исчезают, а затем образуются снова.

Формальное привлечение виртуальных частиц означает, что внутреннюю структуру элементарных частиц невозможно опи­сать через другие частицы.

Удовлетворительной теории происхождения и структуры элементарных частиц пока нет. Многие ученые считают, что такую теорию можно создать только при учете космологических обстоятельств. Большое значениеимеет исследование рождения элементарных частиц из вакуума в сильных гравитационных и электромагнитных полях, поскольку здесь устанавливается связьмикро- и мегамиров. Фундаментальные взаимодействия во Вселенной, в мегамире определяют структуру элементарных частиц и их превращения. Очевидно, потребуется выработка новых понятий для адекватного описания структуры матери­ального мира.

4.МЕГАМИР : современные астрофизические и космологические концепции.

Мегамир, или космос, современная наука рассматривает как взаимодействующую и развивающуюся систе­му всех небесных тел. Мегамир имеет системную организацию в форме планет и планетных систем, возникающих вокруг звезд, звезд и звездных систем — галактик; системы галактик — Метагалактики.

Материя во Вселенной представлена сконденсировавшими­ся космическими телами и диффузной материей. Диффузная материя существует в виде разобщенных атомов и молекул, а также более плотных образований — гигантских облаков пыли и газа — газово-пылевых туманностей. Значительную долю ма­терии во Вселенной, наряду с диффузными образованиями, за­нимает материя в виде излучения. Следовательно, космическое межзвездное пространство никоим образом не пусто.

1)Звездная форма бытия космической материи.

На современном этапе эволюции Вселенной вещество в ней находится преимущественно в звездном состоя­нии. 97% вещества в нашей Галактике сосредоточено в звездах, представляющих собой гигантские плазменные образования различной величины, температуры, с разной характеристикой движения. У многих, если не у большинства других галактик, "звездная субстанция" составляет более чем 99,9% их массы.

В недрах звезд при температуре порядка 10 млн град, и при очень высокой плотности атомы находятся в ионизированном состоянии: электроны почти полностью или абсолютно все от­делены от своих атомов. Оставшиеся ядра вступают во взаимо­действие друг с другом, благодаря чему водород, имеющийся в изобилии в большинстве звезд, превращается при участии угле­рода в гелий. Эти и подобные ядерные превращения являются источником колоссального количества энергии, уносимой из­лучением звезд.

Звезды не существуют изолированно, а образуют системы. Простейшие звездные системы — так называемые кратные сис­темы, состоящие из двух, трех, четырех, пяти и больше звезд, обращающихся вокруг общего центра тяжести. Компоненты некоторых кратных систем окружены общей оболочкой диф­фузной материи, источником которой, по-видимому, являются сами звезды, выбрасывающие ее в пространство и виде мощ­ного потока газа.Звезды объединены также в еще большие группы - звезд­ные скопления, которые могут иметь "рассеянную" или "шаровую" структуру. Рассеянные звездные скопления насчи­тывают несколько сотен отельных звезд, шаровые скопления — многие сотни тысяч.

Перечисленные звездные системы являются частями более общей системы — Галактики , включающей в себя помимо звезд и диффузную материю. По своей форме галактики разделяются на три основных типа: эллиптические, спиральные и непра­вильные. В неправильных галактиках наблюдаются вихревые движения газов и тенденция к вращению, вероятно, ведущие к образованию спиральных ветвей. В настоящее время астроно­мы насчитывают около 10 млрд галактик.

Большинство галактик имеет эллиптическую или спиралевид­ную форму. Галактика, внутри которой расположена Солнечная система, является спиральной системой, состоящей приблизитель­но из 120 млрд звезд. Она имеет форму утолщенного диска. Наи­больший диаметр равен 100 тыс. световых лет.

Наша Галактика состоит из звезд и диффузной материи. Ее звезды разделяются различными способами на подсистемы. В ней насчитывается приблизительно 20 тыс. рассеянных и около 100 шаровых скоплений звезд. Кроме того, можно выделить звезды, концентрирующиеся в галактической плоскости и обра­зующие плоскую систему и сферическую форму пространст­венного распределения звезд, образующую ядро галактики.

По радиоастрономическим наблюдениям сделано заключе­ние, что наша Галактика имеет четыре спиральные ветви. Бли­жайшей галактической системой является туманность Андроме­ды, находящаяся от нас на расстоянии 2 700 000 световых лет. Нашу Галактику и туманность Андромеды можно причислить к самым большим из известных в настоящее время гал

К-во Просмотров: 155
Бесплатно скачать Реферат: Структурные уровни организации материи концепции микро- макро- и мегамиров