Реферат: Структуры данных
вставить вершину;
удалить вершину;
заменить вершину;
добавить дугу;
удалить дугу;
найти в графе заданный подграф.
В терминах графов строка - линейный неориентированный граф.
Раздел математики изучающий свойства графов называется теорией графов.
3.3.Деревья
Определение.
Дерево - связный ациклический (без циклов) граф.
Подчеркнем что здесь в цикле ориентация дуг не учитывается.
Определение.
Одна вершина в дереве имеет степень захода 0. Эта вершина назывется корнем дерева.
Одна или несколько вершин в дереве имееют степень исхода 0. Эти вершины называются листьями.
Следствием условия ацикличности является то, что все вершины в графе, кроме корня, имеют сепень захода 1.
Деревья могут быть как ориентированные так и нет.
Определение.
Высотой дерева называется самый длинный путь в дереве из корня к листу.
Примеры.
1. Группа родственников с отношением быть ребенком;
2. Дерево игры;
3. Слова в алфавите: разбиваются на классы эквивалентности по первому символу, каждый класс в свою очередь разбивается на классы эквивалентности по второму символу и т.д.
Определение.
Не связный ациклический граф называется лесом.
Рекурсивное определение дерева.
1.Множество из одной вершины - дерево;
2.Если Т1, Т2, ...ТN - деревья, то вершина
T1 T2 T3 ... TN - дерево
Основные операции над деревьями: