Реферат: Сцепление и рекомбинация. Мутации роль в эволюции и индивидуальном развитии

Например, хромосома №2 человека образована при транслокации, произошедшей у наших предков после ответвления от ствола всех приматов: у орангутанга, гориллы и даже шимпанзе (5 млн. лет расхождения). У всех этих наших родственников по две независимых хромосомы, которые лишь у человека оказались соединенными. Часто, хотя и не всегда, перестройки приводят к понижению жизнеспособности, но в нашем случае получилось не так, мы получили две разных хромосомы шимпанзе, которые соответствуют хромосоме №2 человека. Это видно при поперечном окрашивании хромосом, которые выявляют идентичные в геноме фрагменты хромосом. Все люди на Земле имеют общего предка, у которого произошла эта транслокация (меньше 5 млн. лет назад)

Число хромосом у млекопитающих может различаться в десятки раз, хотя размер генома отличается менее чем на 20%. У человека число пар хромосом 23, а у лошади – 66, у обитающего в Азии оленя-мунтжака – 6 хромосом. Исключение составляет южно-американский грызун, называемый красной вискашевой крысой (латинское название Tympanoctomys barrerae, английское – red viscacha rat), хотя крысе оно весьма отдаленный родственник). У этого животного геном не диплоидный, а тетраплоидный, содержит в два раза больше ДНК, чем у остальных млекопитающих, и 102 хромосомы.

Если до общего предка млекопитающих около 200 миллионов лет и около 60 транслокаций (перестроек разных хромосом), то 1 транслокация сохраняется и дает начало новому виду не реже чем раз в 3 млн лет. А так как недетектируемых внутрихромосомных перестроек больше на 1-2 порядка, то это означает, что носители таких перестроек выживают гораздо чаще, нежели раз в 3 млн. лет. Последний раз такая перестройка в линии человека произошла не более 5 млн. лет назад.

Геномные и хромосомные мутации могут появляться и в соматических клетках человека и животных. В этом случае они не передаются потомству, но часто связаны с развитием рака. Реципрокная транслокация фрагментов между хромосомами 8 и 14 в лимфоцитах человека приводит к лимфоме Бёркита: к гену иммуноглобинов присоединяется ген онкогена с-MYC, меняя его регуляцию.

Таким образом, перестройки, происходящие в соматических клетках, влияют только на нас, а на следующее поколение не влияют. Те перестройки, которые происходят в клетках зародышевого пути, могут пройти через эволюционное «сито» и остаться в поколениях, Это может привести к репродуктивной изоляции индивидов с перестройками от других индивидов внутри данного вида.

Хотя в клетках зародышевого пути геном остается постоянным, изменение структуры генов и генома может быть нормальной частью жизненного цикла. У некоторых эукариот число хромосом в соматических клетках отличается от числа хромосом в клетках зародышевого пути. У некоторых простейших в определенной фазе развития геном распадается по на несколько тысяч хромосом, предположительно соответствующих отдельным генам. Размер генома вегетативных клеток и клеток зародышевого пути также может различаться. Например, у некоторых круглых червей в соматических клетках (но не в клетках зародышевого пути!) подавляющая часть генома утрачивается (явление называется диминуцией хроматина). У человека перестройки генов иммуноглобулинов в лимфатических клетках - условие образования разных антител. Только при таком условии в организме может образовываться то разнообразие антител, которое может обеспечить необходимую защиту. То есть перестройки генома могут быть управляемыми и необходимыми.

Несколько слов про генные мутации. Генные мутации являются скачкообразными изменениями отдельных локусов хромосом – генов. Мутантные гены сохраняют свойство репродукции при делении ядра клетки, вследствие чего мутационные изменения наследуются. Мутации могут быть прямыми (нуклеотид Т в данной позиции заменен на нуклеотид С) и обратными (мутантный нуклеотид С в данной позиции заменен на нуклеотид Т, характерный для дикого типа). Частота мутирования в обоих направления характерна для каждого локуса. Для разных типов мутаций она варьирует от 10-6-10-8 на нуклеотид на генерацию до 3*10-1. Спонтанный мутационный процесс обусловливается свойством самого гена, системой генотипа, физиологическим состоянием организма и колебанием факторов внешней среды. Каждый локус – ген может мутировать в несколько состояний, образуя серию множественных аллелей. Для примера скажем, что существует ген супрессора опухолей, где обнаружены сотни мутаций, при каждой из которой опухоль может развиться в разных местах.

"Горячие пятна" мутаций внутри гена распределены неравномерно. Они характерны не только для спонтанного мутирования, но и при воздействии определенными химическими агентами.

Например, разберем мутации в гене CFTR, которые вызывают муковисцидоз – заболевание, связанное с дефектом проводимости ионных каналов, проявляется в виде заболеваний легких и др. В этом гене описано уже больше тысячи разных мутаций. На графике представлена частота разных мутаций в разных частях гена, видно, что распределение частоты неравномерно в разных его участках – экзонах. Частота встречаемости в популяции разных мутаций одного гена различается в тысячи раз.

Если смотреть реальное распределение мутаций среди людей, оказывается, что каждая из них присутствует со своей частотой в группе, живущей на данной территории. Например для России мутация ΔF508 встречается у 80% больных. А остальные мутации составляют менее 20%, некоторые же не встретятся в России вообще.

На этом слайде показано, как растет частота мутаций с увеличением дозы облучения. Частота мутаций линейно растет с увеличением дозы радиоактивного облучения. «Безопасной» дозы облучения нет (нет порога). Повреждения происходят при любых дозах, так что понятие порога чисто юридическое.

На рисунке выше показано, что при воздействии мутагенами нет нижнего порога дозы. В данном случае показана ситуация с рецессивными мутациями, аналогичная ситуация и с доминантными. Поскольку все время есть какое-то фоновое мутагенное воздействие, то можно подумать, что число мутаций в поколениях должно все время расти

Действительно, после мутагенного воздействия (Хиросима, Чернобыль, Бхопал, Орандж эйджент) частота мутаций растет. Растет также и процент опухолевых заболеваний, так как повреждается геном соматических клеток. Однако после снятия мутагенного воздействия доля мутантов не увеличивается, а только снижается в поколениях из-за гибели и пониженной жизнеспособности мутантов. Если ребенок родился, значит наиболее существенные для развития гены у него нормальные, ведь в противном случае он бы умер на эмбриональной стадии. Основной летальный эффект мутаций реализуется еще на клеточном уровне, а не на организменном уровне. Клетка запрограммирована не пропускать мутации в следующее поколение. Есть специальный молекулярный механизм отслеживания повреждения в ДНК, еще до того как поврежденный участок понадобится для реализации функции. Если окажется, что ДНК повреждена и не может быть исправлена (репарирована), то в такой клетке станет работать запрограммированная система самоубийства. Вероятно, основная часть мутаций приводит к дефектам функционирования и гибели уже на стадии первых делений оплодотворенной яйцеклетки, меньшая часть проявляется позже и приводит к спонтанному аборту, еще реже – к рождению ребенка с аномалиями.

Хотя эта частота была повышенной после ядерного взрыва, уже через два поколения (сейчас) у жителей с Хиросимы частота наследственных аномалий и опухолевых заболеваний такая же и даже ниже, чем в других городах Японии, так как население этого города оказалось под пристальным вниманием врачей, проводилось больше профилактики и т.д. Что же касается опухолевых заболеваний, то во втором поколении частота заболеваний уже не будет больше, так как это эффект повреждения соматических клеток, не передающееся по наследству, не учитывая некоторые конкретные болезни.

В Чернобыле, после точки максимума, частота аномалий при рождении снизилась в 8 раз за первые 10 лет после радиоактивного выброса. Если произошла доминантная летальная мутация, то она будет устранена уже в следующем поколении. Если же мутация рецессивная, то частота мутации будет все время падать в поколениях (тем быстрее чем более выражен ее вредный эффект) и это будет монотонно убывающей функцией.

Генетика популяций

До этого мы говорили о том, что происходит с индивидом, но с точки зрения эволюции больший интерес представляют изменения внутри популяций. В каждом поколении частота каждого аллеля данного гена и частота каждого генотипа по этому гену сохраняется постоянной. Правда при условии, если отбора нет, если среда не меняется, если подбора пар нет (свободно скрещивающася или панмиктическая популяция), если нет миграции (притока генов извне) и еще много всяких «если». В этом случае и частоты фенотипов постоянны.

Например, мы по внешности распознаем людей с данной территории как один народ, хоть люди и разные. Это происходит потому, что частоты аллелей в данной популяции постоянны в поколениях, а, следовательно, постоянны и частоты генотипов. Ну а среда вокруг все та же – поэтому и частоты фенотипов не меняются. Вот эту совокупность фенотипов мы и воспринимаем либо как общую (один народ), либо как другую (другой народ).

Если мы будем рассматривать коренных жителей достаточно удаленных регионов (несколько тысяч километров) то принять решение, что народы, или даже расы, разные, труда не составит. А вот если посмотреть на такие же группы, разделенные расстоянием в сотни километров, не говоря уж о десятках километров, то возникнут большие затруднения, где же границу провести. Потому что границы-то объективной, генетической, нет. Есть только непрерывный ряд частот огромного количества аллелей, причем со своим направлениями и градиентами изменения в географическом пространстве.

Приведем для наглядности такой пример, иллюстрирующий постоянство частот аллелей в поколениях одной популяции. Для человека известен доминантный ген Т (Taster – дегустатор). Носитель его обладает свойством определять на вкус слабый раствор фенилтиокарбамида как горький. Обладатель рецессивной аллели этого гена в гомозиготном состоянии (tt) тот же раствор определяет как безвкусный. Присутствие такого гена можно тестировать как на уровне генотипа, так и на фенотипическом уровне: «чувствует-не чувствует» горечь. Определено, что частота «дегустаторов» в данном поколении 0,36, а «не дегустаторов» - 0,64. «Не дегустаторы» несут два аллеля tt, следовательно, частота аллеля в популяции равна корню квадратному из этой величины (0,64), то есть частота аллеля t в популяции равна 0,8. В сумме частота двух аллелей равна 1, cледовательно, частота аллеля Т равна 1 – 0,8 = 0,2. Зная частоты аллелей в гаметах (сперматозоидах и яйцеклетках) можно рассчитать частоты генотипов и фенотипов которые получаться в следующем поколении.

0,2 T

0,8 t

0,2 T

0,04 TT

0,16Tt

0,8 t

0,16Tt

0,64tt

Нетрудно видеть, что частоты генотипов и фенотипов по гену Т остались неизменными в следующем поколении.

К-во Просмотров: 171
Бесплатно скачать Реферат: Сцепление и рекомбинация. Мутации роль в эволюции и индивидуальном развитии