Реферат: Сучасні квантові криптографічні лінії зв’язку

Як видно з рисунка, передавач А посилає потік одиночних фотонів довжиною хвилі 1550 нм у вигляді сильно ослаблених лазерних імпульсів (формуючи так звану ланку слабкої когерентності). Кожен із цих фотонів проходить через інтерферометр Маха-Цендера, що випадково модулюється за допомогою РМφА , встановлюючись на одну із чотирьох фаз (варіант, що відповідає використанню протоколу BB84), що діє на інтервалі проходження імпульсу. Тим самим модулюється "фаза" хвильового образу фотона, обрана на основі використованого базису ("+","×") і значення ("0","1"), важливих прі самоінтерференції на виході інтерферометра.

Приймач на стороні Б містить інший схожий інтерферометр, який випадково моделюється за допомогою РМφВ для встановлення однієї із двох фаз, необхідної для встановлення потрібного базису. Фотон, пройшовши інтерферометр Б, відновлює, інтерферуючи на вихідному розгалуджувачі, свій стан, потрапляючи на один з детекторів ("0" або "1") APD. Для синхронізації роботи детекторів А посилає (використовуючи WDM-мультиплексор) у те ж волокно потужні імпульси з довжиною хвилі 1300 нм для синхронізації й стробування діодів APD.

На рис. 4 показано механізм проходження фотонів від джерел з А до детекторів APD у Б (без урахування факту використання модуляції). На рис. 4 а показані незбалансовані інтерферометри Маха-Цендера, плечі яких різні: нижні (короткі) мають довжину SA і SB , а верхні (довгі) - довжину LA і LB . Це значить, що плечі мають різну часову затримку на поширення хвильового імпульсу. Фотон, розглянутий як хвиля, розщеплюється на два однакових промені першим розгалуджувачем (50/50) в абонента. Нижній проходить шлях SA , а верхній - LA до вихідного розгалуджувача, де промені поєднуються, створюючи дипульс LA SВ , що, пройшовши квантовий ОВ-канал, доходить до вхідного розгалуджувача (50/50) інтерферометра Б. Потім він знову розщеплюється на два однакових промені. Нижній проходить шлях SB , а верхній - LB до вихідного розгалуджувача Боба, де вони утворюють два дипульса: нижній LA SВ /SA SB і верхній - LA LВ / SA LВ . Об'єднання їх показано на рис. 4 б. Воно призводить (за умови ідентичності/налаштування обох інтерферометрів) до формування хвилі із трьома піками: більшим центральним (SA LB + LA SВ ) і двома бічними (LA LB і SA SB ).

Для опису дії модуляції в даній системі згадаємо закони відбиття/преломлення:

· фаза променя, відбитого від границі розділу двох середовищ (з показником заломлення n1 і n2 ), зрушується на π/2, якщо n2 > n1 і не змінюється, якщо n2 < n1 ;

· фаза променя, заломленого на границі розділу двох середовищ (якщо промінь існує), не змінюється.

На рис. 5 показано, що центральний пік у фотонному імпульсі містить інтервал когерентності (рис. 5 а), всередині якого одночасно присутні хвильові образи двох різних шляхів: SA LB і LA SB , фази яких, у загальному випадку, зрушені відносно один одного на деяку величину Δ. Ці два хвильових образи взаємодіють (інтерферують) при об'єднанні на виході інтерферометра в точці розгалуження в В (на рис. 6в показана границя розділу середовищ у цій точці).

Рисунок 5 – Механізм вибору «0» та «1» за допомогою APD і інтерферометра на боці Б.

Застосовуючи закони відбиття/заломлення і припускаючи, що нижче цієї границі роздягнуло середовище більше щільне, одержимо, що відбиті верхні й заломлена нижня хвилі виявляться у противофазі й знищують один одну (це називають іноді деструктивною інтерференцією), що фіксується за допомогою APD як "0" (тобто фотон не фіксується), а відбита нижня й преломлена верхня хвилі виявляться у фазі й підсилюють один одну (це називають іноді конструктивною інтерференцією), що фіксується APD як "1" (тобто фотон не фіксується).

Настроювання правильності спрацьовування APD здійснюються шляхом підстроювання фазового зсуву Δ від імпульсу до імпульсу, що и виконує абонент А шляхом установки потрібної величини зсуву фази для зсувуючої схеми свого РМφА для кожного переданого імпульсу.

Розглянемо таку схему кодування для протоколу BB84 із чотирма станами. Абонент А кодує "0" і "1" для одного фотона в кожному із двох випадково обраних неортогональних базисів (позначимо їх як 0 і 1). Так вона може представити значення біта "0" фазовим зсувом 0° (у базисі 0) або π/2 (у базисі 1), а значення "1" - фазовим зрушенням π (у базисі 0) або Зπ/2 (у базисі 1). Отже, абонент А може формувати одне із чотирьох фазових зсувів (0, π/2,π, Зπ/2) шляхом вибору чотирьох кодових комбінацій у просторі станів "біт-базис": (00, 01, 10, 11). Це можна здійснити, подаючи чотири різних напруги (умовно: 0, 1, 2, 3) на електрооптичний фазозсуваючий пристрій.

Абонент Б обирає базис, зсуваючи у випадковому порядку фазу на 0 або π/2, і привласнює APD, приєднаному до виходу "0", значення 0, a APD, приєднаному до виходу "1" - значення 1. Коли різниці фаз рівні 0 або π, абоненти А и Б використають сумісні базиси й одержують певний результат. У цих випадках абонент А може визначити, у який з детекторів абонента Б потрапить фотон і яке значення (0 або 1) отримано. Абонент Б також може встановити, яку фазу обирав абонент А при передачі кожного фотона. Якщо ж різниця фаз дорівнює π/2 або Зπ/2, то А и Б використають несумісні базиси, і фотон випадковим образом вибирає один з детекторів Б. Всі можливі комбінації зведені в таблицю.

Основні труднощі реалізації даної системи в тім, що незбалансованість інтерферометрів абонентів А и Б має бути стабільною в межах часток довжин хвилі фотонів під час передачі ключа для збереження потрібних фазових співвідношень. Це означає, що інтерферометри мають бути в термостабілізованих контейнерах, а системі необхідно забезпечити компенсацію дрейфу фази. Крім того, зміни поляризації в короткому й довгому плечах у кожному інтерферометрі мають збігатися, тобто необхідно використати контролери поляризації.

Таблиця 1 – Стани для фазового кодування/декодування протоколу ВВ84

абонент А абонент Б
Біт φА Біт+базис φВ φА + φВ Біт
0 0 00 0 0 0
0 0 00 π/2 3π/2 ? (0/1)
0 π/2 01 0 π/2 ? (0/1)
0 π/2 01 π/2 0 0
1 π 10 0 π 1
1 π 10 π/2 π/2 ? (0/1)
1 3π/2 11 0 3π/2 ? (0/1)
1 3π/2 11 π/2 π 1

4. Проблеми та перспективи квантових систем передавання

Аналізуючи описане вище, можна зрозуміти основні проблеми квантової криптографії і передачі квантового ключа. Про деяких ми вже згадували. Ці проблеми можна розділити на два класи: методологічні й технологічні. До методологічних проблем можна віднести проблему таємності, підслуховування, можливості перехоплення і дешифрації повідомлень.

Технологічні проблеми і перспективи росту довжини передачі визначаються, з одного боку, типом використовуваного кодування, а з іншого боку - тими складностями процедури уточнення, які ми відзначали вище і які неминуче впливають на припустиму точність і надійність формування підсумкового секретного квантового ключа.

Проблеми систем з поляризаційним кодуванням, як відзначено вище, криються в середовищі передачі. Якщо вона зберігає поляризацію на довжині L незмінною, то може використовуватися для квантового каналу передачі. Таким середовищем є вільний простір, однак при її використанні довжина передачі L обмежується звичайно відстанню 1 км (і менше при дощі й тумані) через велике загасання сигналу в атмосфері, хоча відомі і системи рекордної довжини - 10 км при гарній погоді. Використання ОВ як середовища передачі також обмежено, але не загасанням сигналу, а випадковою зміною стану поляризації волокна, що має місце навіть у спеціальних волокнах, що зберігають стан поляризації, хоча досягнуті результати (23 км) і виглядають обнадійливим.

Викладене говорить про те, що поляризаційне кодування є не оптимальним при побудові криптосистем із квантовим ОВ-каналом, хоча воно ефективно для криптосистем з каналом зв'язку у відкритому просторі.

К-во Просмотров: 177
Бесплатно скачать Реферат: Сучасні квантові криптографічні лінії зв’язку