Реферат: Суспензионные препараты заводского производства

1. Выбор дисперсионной среды с плотностью, равной или близкой к плотности лекарственного вещества;

2. Уменьшение размеров частиц за счет более тонкого измельчения лекарственного вещества;

3. Выбор дисперсионной среды с высокой вязкостью.

В условиях заводского производства выбор дисперсионной среды, близкой по плотности к плотности лекарственного вещества, выбор среды с высокой вязкостью зачастую невозможен, так как состав лекарственного препарата строго регламентирован соответствующими нормативными документами (Государственная Фармакопея, фарм. статьи, временные фарм. статьи, технические условия). Обычно для повышения седиментационной устойчивости суспензий используется второй метод — уменьшение размеров частиц лекарственного вещества за счет более тонкого его измельчения.

Малый размер частиц лекарственного вещества обусловливает их большую удельную поверхность, что приводит к увеличению свободной поверхностной энергии. Измельчение частиц до бесконечно малых размеров невозможно (2-ой закон термодинамики). Из следствия этого закона, свободная поверхностная энергия частицы стремится к минимуму. Уменьшение свободной поверхностной энергии может происходить за счет агрегации (слипания, объединения) частиц.

Агрегативная (конденсационная) устойчивость — это способность частиц дисперсной фазы противостоять агрегации (слипанию). Агрегационная устойчивость частиц обеспечивается наличием на их поверхности электрического заряда (вследствие диссоциации, адсорбции ионов и пр.). Препятствуют агрегации также наличие на частицах оболочки из ВМС, ПАВ, сольватной оболочки.

При большом запасе поверхностной энергии в суспензиях может происходить процесс флокуляции (осаждения дисперсной фазы в виде конгломератов — флокул), при котором вследствие уменьшения агрегативной устойчивости уменьшается кинетическая устойчивость суспензии. Восстановить дисперсную систему в таком случае удается путем взбалтывания. Флокулы по своей физико-химической структуре могут быть аморфные (плотные, творожистые, хлопьевидные, волокнистые) и кристаллические. В последнем случае восстановить дисперсную систему взбалтыванием не удается.

Для повышения агрегативной устойчивости суспензий необходимо обеспечить наличие на поверхности частиц лекарственного вещества электрических зарядов, что достигается добавлением в суспензию вспомогательных веществ. В качестве вспомогательных веществ при получении суспензий (стабилизаторов) используются высокомолекулярные вещества (ВМС), поверхностно-активные вещества (ПАВ) и др.

Механизм стабилизирующего действия ПАВ и ВМС заключается в том, что они адсорбируются на поверхности твердых частиц лекарственного вещества и, вследствие дифильности ПАВ (т.е. наличия полярной и неполярной частей в молекуле) и наличия диполей (положительного и отрицательного заряда) в молекуле ВМС. Молекулы стабилизатора ориентируются на границе раздела фаз таким образом, что своей полярной (или заряженной) частью они обращены к полярной фазе, а неполярной частью — к неполярной, образуя, таким образом, на границе раздела фаз мономолекулярный слой. Вокруг этого слоя ориентируются молекулы воды, образуя гидратную оболочку, при этом снижаются силы поверхностного натяжения на границе раздела фаз, что ведет к повышению агрегативной устойчивости суспензии.

Для повышения устойчивости при хранении изготавливаемых в условиях заводского производства суспензий, таким образом, можно использовать два способа: максимальное измельчение лекарственного вещества и введение специально подобранных вспомогательных веществ (стабилизаторов).

Технология производства суспензий

Существует два метода получения суспензий: дисперсионный и конденсационный. Дисперсионный способ получения суспензий основан на измельчении частиц лекарственного вещества механическими способами, с помощью ультразвука и другими. При получении суспензии дисперсионным методом учитывают степень гидрофильности или гидрофобности лекарственного вещества, вводимого в состав суспензии. Конденсационный способ получения суспензий основан на замене растворителя; при этом к дисперсионной среде, в которой лекарственное вещество нерастворимо, добавляют раствор лекарственного вещества в растворителе, который смешивается с дисперсионной средой.

Получение суспензий на крупных фармацевтических предприятиях осуществляется различными способами:

1. интенсивным механическим перемешиванием с помощью быстроходных мешалок и роторно-пульсационных аппаратов;

2. размолом твердой фазы в жидкой среде на коллоидных мельницах;

3. ультразвуковым диспергированием с использованием магнитострикционных и электрострикционных излучателей;

4. конденсационным способом.

Конденсационный метод получения суспензий в условиях заводского производства обычно используется редко; этим способом пользуются, в основном, в условиях аптечного производства.

Технология изготовления суспензий дисперсионным методом

При изготовлении суспензий дисперсионным методом наиболее пристальное внимание относят к измельчению лекарственного вещества, так как именно этот фактор в наибольшей степени влияет на устойчивость образующейся суспензии.

При изготовлении суспензии этим методом лекарственное вещество (твердая фаза) предварительно измельчают до мелкодисперсного состояния на специальных машинах, готовят концентрированную суспензию перемешиванием в смесителях, затем многократно диспергируют на коллоидных мельницах или ультразвуковых установках. Для «сухих» суспензий, представляющих собой смесь лекарственного и вспомогательных веществ, образующих суспензию после добавления воды (в аптечных или домашних условиях), каждый ингредиент измельчают отдельно и просеивают через тонкое сито. После смешения ингредиентов во избежание расслоения смесь вновь просеивают.

Диспергирование с помощью турбинных мешалок

Для механического диспергирования могут применяться пропеллерные и турбинные мешалки закрытого и открытого типов. Пропеллерные мешалки создают круговое и осевое движение жидкости со скоростью 160-1800 об/мин и применяются для маловязких систем. В процессе перемешивания часто используют вакуум для удаления воздуха, который понижает устойчивость суспензии. Более тонко диспергированные и стойкие эмульсии можно получить с помощью турбинных мешалок, которые создают турбулентное движение жидкости.

Мешалки открытого типа представляют собой турбины с прямыми, наклонными под разными углами или криволинейными лопастями.

Мешалки закрытого типа — это турбины, установленные внутри неподвижного кольца с лопастями, изогнутыми под углом 45-900 . Жидкость входит в мешалку в основании турбины, где расположены круглые отверстия, и под действием центробежной силы выбрасывается из нее через прорези между лопастями кольца, интенсивно перемешиваясь во всем объеме реактора. Скорость вращения турбин в таких мешалках составляет 1000-7000 об/мин.

Диспергирование с помощью роторно-пульсационных аппаратов

В промышленной технологии суспензионных препаратов широкое распространение нашли роторно-пульсационные аппараты. В последнее время появилось много зарубежных и отечественных конструкций РПА различных типов — погружного, вмонтированного и проходного (проточного) типов.

РПА погружного типа обычно выполняются в виде мешалок, помещаемых в емкость с обрабатываемой средой. Для повышения эффективности перемешивания погружных РПА иногда устанавливают дополнительно к имеющимся мешалкам других типов (например, якорный).

Погружные РПА серийно выпускаются отечественной промышленностью под названием гидродинамических аппаратов роторного типа, а также рядом зарубежных фирм. Несмотря на конструктивную простоту погружных РПА, они не обеспечивают достаточно однородной обработки всей массы продукта.

Наибольшее распространение получили РПА проточного типа, рабочие органы которых смонтированы в небольшом корпусе, имеющем патрубки для входа и выхода обрабатываемой среды. При этом в большинстве конструкций обрабатываемая среда поступает по осевому патрубку во внутреннюю зону устройства и движется в нем от центра к периферии. Известны конструкции РПА, в которых обрабатываемая среда движется в обратном направлении, перемещаясь от периферии к центру. При таком движении степень турбулизации потока возрастает, одновременно с этим повышаются гидравлическое сопротивление аппарата, затраты электроэнергии и разогрев обрабатываемой среды. Отдельные модификации РПА могут иметь рабочие камеры с различным направлением движения потока.

РПА различных типов могут быть выполнены с вертикальным или горизонтальным приводным валом. Вертикальный вал имеет большинство погружных РПА, а также некоторые проточные РПА. Большинство проточных РПА выполняются с горизонтальным валом.

По количеству рабочих камер РПА могут быть однокамерными и многокамерными. Однокамерные аппараты имеют два диска с концентрическими рядами зубьев или цилиндрами с прорезями. Один или оба диска вращаются. В многокамерных аппаратах имеется более двух дисков с зубьями или перфорированными цилиндрами, в результате чего образуется две или более зоны активной обработки среды.

Кроме основных рабочих органов (цилиндров с прорезями, дисков), РПА могут иметь дополнительные рабочие органы, предназначенные для повышения эффективности их работы. Часто в качестве дополнительных элементов используют лопасти-ножи, устанавливаемые на роторе, статоре или корпусе. Лопасти на роторе позволяют значительно улучшить напорно-расходные характеристики РПА, повысить эффективность обработки потока во внутренней зоне и создать дополнительные ступени обработки. Повышение эффективности РПА может быть достигнуто за счет установки в рабочем пространстве дополнительных рабочих органов, не связанных жестко с основными органами. В этом случае используют диспергирующие и другие дополнительные тела, обеспечивающие повышение эффективности диспергирования и степени турбулизации потока. Наличие инертных тел — шаров, бисера, колец и др., приводит к дополнительной интенсификации проводимых процессов измельчения.

К-во Просмотров: 326
Бесплатно скачать Реферат: Суспензионные препараты заводского производства