Реферат: Техника СВЧ

В первой части данной главы были рассмотрены проблемы группирования электронного потока с входными зазорами. Не менее важной задачей, для получения высокого КПД, является подбор оптимальных параметров для выходного резонатора. Для предварительных оценок качества группирования Мираном был предложен показатель качества.

,

где I1 /I0 - относительная амплитуда первой гармоники тока

vmin /v0 - относительная скорость самого медленного электрона

Эти проблемы были исследованы на кафедре ЭП [12]. В этой работе даются графики, изображенные на рис.2.12,2.13. Эти зависимости были исследованы для реального сгустка электронов, имеющего I1max /I0 =1.4 при xn-1 =0.4. Расчеты проводились по пятислойной одномерной модели потока из деформирующихся элементов по программе описанной в [13,14]. На рис.2.12 показаны зависимости электронного КПД hе от амплитуды напряжения на выходном зазоре xn при различных углах пролета q. Кривая 1 соединяет точки, в которых электроны начинают поворачивать назад. Кривая 2 соединяет точки, соответствующие выбросу части электронов из зазора. Максимум КПД достигается при больших значениях xn (кривая 3) при этом от 4 до 6% электронов возвращается назад. Кривая 4 соединяет точки, в которых падает не более чем на 0.5%, по сравнению с максимальным значением. При этом количество выбрасываемых электронов уменьшается примерно на 2%. При xn >1.35 КПД практически не увеличивается, даже при больших q.

На рис.2.12 представлены кроме того результаты расчета взаимодействия этого же сгустка с полем зазора при q=1.6 для различных xn в кинематическом приближении (кривая 5).

На рис.2.13 приведены зависимости xn и hе от q построенные по данным рис.2.12. Кривые 1-4 имеют тот же смысл. На этом рисунке нанесена кривая, соответствующая часто используемой оценке xn =1/М, где М- коэффициент взаимодействия бессеточного зазора, которая расположена примерно на 0.1ниже кривой 4 при изменениях q от 1 до 2. На рис.2.13 воспроизведены также взятые из книги Варнека и Генара кривая 5, выше которой появляются отраженные электроны и прямая 6, выше которой часть электронов выбрасывается из зазора назад. Заштрихованная между этими линиями область колеблющихся электронов совершенно не совпадает с соответствующей областью между кривыми 1 и 2. Это является следствием пренебрежения пространственным зазором и распределением скоростей. Учет распределения скоростей в рамках кинематического рассмотрения приводит к смещению вниз области колеблющихся электронов (кривые 7,8). Таким образом, часто применяемая оценка xn =1/М близка к значениям, соответствующим hеmax , однако физические причины, ограничивающие амплитуду напряжения на зазоре, другие. Это не первое появление колеблющихся или выбрасываемых назад электронов. Максимальная амплитуда устанавливается в режиме выбрасывания электронов из зазора назад в результате баланса энергии, отдаваемой быстрыми электронами и отбираемой электронами, получившими возвратное движение. С этой точки зрения о качестве группирования следует судить не по скорости самого медленного электрона, а по усредненному значению определенной части медленных электронов. Зависимость hе от q можно считать пропорциональной М3/2 , отклонение при этом не превышает 1%. Выше сказанное позволяет предложить новое выражение показателя качества, позволяющего оценивать качество группирования и электронный КПД

где vmin - усредненное значение скоростей некоторой части самых медленных электронов.В качестве приближения можно считать vmin =xn-1 /2

С помощью полученного коэффициента качества можно определять не только параметры выходного зазора, но и определять оптимальную амплитуду на предпоследнем резонаторе .

Рис.2.12. Зависимость электронного КПД hе от амплитуды x при различных углах пролета q.

Рис.2.13. Зависимость амплитуды x и КПД hе от угла пролета q.

2.3. Приборы, использующие широкие зазоры рассчитанные ранее

Как уже отмечалось на кафедре ЭП работы по созданию клистрона с широким зазором ведутся уже несколько лет. За это время было рассчитано три варианта конструкций. Они представлены на рис.2.14.

2.3.1. Однорезонаторный двухзазорный клистрон с q1 »1.5p.

Достоинством однорезонаторного прибора в его компактности, а следовательно меньшей стоимости. Недостатком является влияние нагрузки на работу генератора. Нагрузка является частью колебательного контура и вносит свою активную и реактивную составляющие. Реактивная составляющая влияет на частоту генерируемых колебаний. Активная составляющая влияет на амплитуду колебаний и при больших флюктуациях проводимости нагрузки может произойти даже срыв колебаний.

Первым генератором был однорезонаторный двухзазорный клистрон на “p“- виде колебаний (см рис 14.а). Прибор расчитывался на первой зоне колебаний. Первый зазор был широким с q1 =1.5p. Мощность этого прибора Р=2-2.5 кВТ при напряжении U0 =4 кВ. Электронный КПД hе =56.3% при следующих параметрах: d1 =11.3 мм., x1 =1.75, x2 =-1.75, L12 =17.5 мм., В=2Ввр .

2.3.2. Однорезонаторный двухзазорный клистрон с q1 »3p.

Следующий прибор это однорезонаторный двухзазорный автогенератор, работающий на “0”- типе колебаний (рис.2.14.б). Отличительной особенностью этого прибора является, то что входной зазор имеет ширину d1 =18 мм., что соответствует углу пролета около 3p.. Поскольку при этом имеет место инверсия условий самовозбуждения т.е. они совпадают с условиями для "p" - вида при q<2p. Осуществление однорезонаторного генератора наиболее целесообразно в области III (см. рис.2.1), из-за того что hе не сильно отрицательно или даже положительно. Это важный момент, так как при большом отрицательном КПД первого зазора не удается сделать большой суммарный КПД, из-за того, что hе1 будет вычитаться из hе2 . Поле в первом зазоре является неравномерным.


а) Однорезонаторный клистрон с резонатором "p" - вида с q1 »3/2p.


ооо

б) Однорезонаторный клистрон с резонатором "0" - вида с q1 »3p.


в) Двухрезонаторный клистрон с q1 »2p.

Рис.2.14. Клистроны с широкими входными зазорами, разработанные ранее

Мощность этого прибора Р=4 кВТ при напряжении U0 =4 кВ. КПД прибора 52.4% при следующих параметрах d1 =18 мм., x1 =2.5, x2 =1.5, L12 =16.5 мм., В=2Вбр .

2.3.3. Двухрезонаторный двухзазорный клистрон с q1»3p.

Третий прибор является двухрезонаторным, но по прежнему с двумя пространствами взаимодействия (рис.2.14.в). Этот прибор отличается от предыдущих наличием глухой стенки между зазорами. Это приводит к тому, что первый зазор должен самовозбуждаться, т.е. работать в монотронном режиме. Вместе с тем наличие стенки позволяет практически исключить влияние нагрузки на генерацию колебаний. Как и в предыдущем случае поле в первом зазоре является неравномерным, что повышает эффективность работы.

Мощность этого прибора Р=20 кВТ при напряжении U0 =8 кВ. Первый зазор имеет угол пролета q1 »2.8p. Суммарный КПД двух зазоров hе å =57%, в выходном зазоре КПД hе2 =53%.

Отметим , что все приборы расcчитаны для различных многолучевых электронно-оптических систем, используемых в различных многорезонаторных клистронах.

2.3.4. Рассмотрение некоторых вариантов клистронов с “p“ - резонатором.

Схематическое изображение клистрона представлено на рис.3.16

Рассмотрим два лучших рассчитанных варианта.

Первый вариант имеет параметры:

d1 =26.75 мм., d2 =11 мм., d3 =4 мм., x1 =1.7, x2 =-1.7, x3 =1.25, L12 =26.75 мм., L23 =15.25 мм., B2 /U0 =140, f=-0.3253 .

При этих параметрах получаем результаты представленные в таб.3.4 вариант 1. Расчет проводился по вычислительной модели T.

Таблица 3.4.

Результаты расчета клистрона с " p"-резонатором

Модель I1max /I0 Zopt hе12 hе3 hе å
1 T 1.6566 58 0.03096 0.621 0.652
2 ST 1.5838 56 0.059

Рис.3.15. Иллюстрация к выбору угла между током и напряжением


Рис.3.16. Схематическое изображение двухрезонаторного клистрона с резонатором "p" - вида с q1 »3/2p.

Это лучший результат из всех вариантов для “p“- вида резонатора. Но при пересчете по более точной модели результат снизился. Для вычислительной модели ST результат приведен в таб.3.4 вариант 2. Как видно результаты существенно снизились, поэтому расчет с выходным зазором не проводился. Более тщательное исследование в окрестностях этого варианта по модели ST не проводился из-за больших затрат машинного времени на один вариант и низкого тока I1max /I0 .

К-во Просмотров: 612
Бесплатно скачать Реферат: Техника СВЧ