Реферат: Технологические иследования процесса массопереноса - диффузии

Содержание

1. Введение

2.Сущность понятия диффузия

3.Классификация методов экспериментального исследования

4.Феноменологическая теория дифузии

5. Безградиентные методы

6. Безактивационная теория

7.Термодинамическая сторона диффузии

8.Список изпользуемой литературы


Введение

С процессом массопереноса - диффузией приходится сталкиваться постоянно в явной или неявной форме в своей повседневной жизни, практической деятельности, научных и технологических исследованиях. Диффузионные процессы — явления достаточно широко распространенные. При анализе массопереноса, следует помнить, что он имеет четыре стороны, в совокупности своей отражающие суть явления. Одновременно каждая из сторон этого «четырехугольника» имеет некоторую самостоятельность и развивается по определенным направлениям независимо от других.

Прежде всего, это внешнее, макроскопическое проявление процесса диффузии. Внешнее, экспериментально наблюдаемое проявление диффузионного процесса связано с изменением в единице пространства количества диффундирующих частиц, т. е. их концентрации. Очевидно, что эта сторона явления связана с экспериментальными исследованиями, технологическим контролем процесса. Разработанные для этого различные методы наблюдения позволяют получать информацию о кинетике перераспределения вещества либо по измерению потока, проникающего сквозь мембрану, либо по количеству днффузанта, поглощенного или выделившегсся из образца (материала), либо по изменению концентрации в той или иной точке диффузионной зоны или образца, либо, наконец, по распределению компонентов в диффузионной зоне, т. е. той области системы, в пределах которой происходит перераспределение диффузионных компонентов пары.

Также есть и немного другие явления дифузии, а именно само- и взаимодиффузии .

Взаимодиффузия характеризует процесс взаимообмена массы между телами, когда имеет место неоднородность в распределении концентрации. Характерной особенностью взаимодиффузии является направленность в перемещении диффундирующих частиц в пространстве, чего нет в случае самодиффузии. Там движение носит хаотический, броуновский характер.

Самодиффузия отражает тепловое движение молекул либо среди себе подобных, либо в растворах постоянной концентрации. В этом случае молекулы каждого из компонентов раствора движутся со своей тепловой скоростью, а это движение с количественной точки зрения характеризуется парциальным коэффициентом самодиффузии. Естественно, что и методы исследования этих типов диффузионных явлений различны.


Сущность понятия диффузия

По определению: под диффузией следует понимать самопроизвольный процесс перераспределения веществ в пространстве, обусловленный тепловым движением частиц (атомов, молекул, сегментов, макромолекул).

Стоит упомянуть, что в центре внимания подавляющего числа работ, связанных с изучением диффузии, всегда находится характеристическая величина процесса — коэффициент диффузии. Во всех количественных исследованиях делается попытка экспериментально определить величину коэффициента диффузии и установить его зависимость от различных параметров. Решить эту задачу на основании результатов экспериментального наблюдения за внешним проявлением процесса и позволяет феноменологическая сторона «четырехугольника». В ее основе лежат законы диффузии, связывающие между собой в аналитической форме плотность потока вещества, проходящего в единицу времени через единицу сечения образца, с перепадом концентрации (градиентом концентрации) и коэффициентом диффузии; скорость изменения концентрации в заданной точке диффузионной зоны с градиентом плотности потока вещества.

Классификация методов экспериментального исследования

Приведенная классификация методов экспериментального исследования является наиболее общей, поскольку базируется на параметрах диффузионного процесса. Но в каждой группе материалов в зависимости от их физико-химических свойств эти методы имеют, естественно, разное физическое и конструктивное оформление. Например, для металлов, стекол, керамики и минералов традиционным методом получения информации о концентрационном профиле в диффузионной зоне является метод электронно-зондового рентгеноспектрального микроанализа в сочетании с методикой поперечных срезов. Тот же метод используется и при изучении систем полимер — полимер, но поскольку термическая и радиационная стабильности полимеров невысоки, возможно использование лишь микроанализаторов с энергетической дисперсией. Для систем полимер — олигомер, полимер — растворитель и жидкость — жидкость этот метод вообще неприменим, и ту же информацию можно получить, используя методы оптической интерферометрии или сканирующей ИК-спектроскопии.

Эта экспериментально-методическая сторона явления неразрывно связана с другой стороной «четырехугольника», которую можно обозначить как «феноменологическая теория диффузии». Если при экспериментальных измерениях инструментом в руках исследователя - являются чаще всего физические методы, то в феноменологической теории таким инструментом является аппарат математической физики. С его помощью получены аналитические уравнения, связывающие изменение тех или иных внешних параметров, регистрируемых в опыте, с координатой диффузии, временем, коэффициентом диффузии, размерами образца. Поскольку, как правило, неизвестной величиной в этих уравнениях является коэффициент диффузии, то обработка экспериментальных данных с их помощью позволяет получать количественную информацию о его величине, устанавливать соответствие принятой математической модели реальному процессу.

Эти стороны так тесно связаны между собой, что естествен вопрос, в чем же проявляется их самостоятельность и независимость. Экспериментальный аспект связан с разработкой, выбором и совершенствованием методов измерения, позволяющих фиксировать интересующий параметр процесса с большой точностью, обладающих высокой селективностью и разрешением. Недостаточная точность измерения в настоящее время является преградой, например, при изучении диффузии в многокомпонентных системах, когда экспериментатору желательно получать информацию о парциальных потоках каждого из компонентов системы, а также при изучении диффузии через границу раздела двух контактирующих сред, когда наибольший интерес представляет информация о распределении концентрации по диффузионной зоне уже на начальных этапах образования адгезионного соединения.

Самостоятельность феноменологической стороны «четырехугольника» иная. Она связана главным образом с решением математических проблем, возникающих как при решении той или иной системы дифференциальных уравнений, отражающих большое многообразие реальных задач, так и при статистической обработке результатов измерений. Из сказанного ясно, что эта сторона «четырехугольника» имеет самый общий характер и с равным успехом может быть использована для любых систем. Специфика каждой системы заключается в абсолютной величине коэффициента диффузии, в характере его изменения с температурой, давлением, концентрацией.Тесная взаимосвязь этих двух сторон проявляется и в возможности априорного расчета математических моделей реальных технологических процессов, поскольку для этого необходимо создать систему аналитических уравнений и выбрать значения коэффициента диффузии.

Феноменологическая теория дифузии

Необходимо отметить, что используемые в опытах методологические подходы и аналитические уравнения для их описания во многих случаях полностью отражают реальные технологические процессы. Рассмотрим несколько наиболее типичных задач и покажем, как они могут быть реализованы при решении проблем медицины, защиты окружающей среды, коррозии металлов. Мне кажется, что очень показательна в этом случае нерешенная задача, связанная с определением комфортных условий для человека в системе: среда — одежда (обувь) — человек. С точки зрения диффузионных процессов мы можем абстрагироваться от человека как индивидуума, а рассматривать его как некоторый «источник» паров воды периодического действия, работа которого иногда сопровождается вспышками, связанными с эмоциональным состоянием. В этом случае роль одежды (а это, как правило, пористый полимерный материал) сводится к созданию таких условий в пространстве под одеждой, чтобы влажность и температура либо сохранялись постоянными, либо изменялись достаточно медленно, чтобы организм успевал адаптироваться к условиям окружающей среды. Очевидно, что решение этой проблемы требует, с одной стороны, постановки эксперимента, с помощью которого можно было бы получить необходимую информацию о коэффициентах диффузии пористых материалов, с другой—" количественные сведения о периодичности источника и его производительности, с третьей — привлечь исследователей, специалистов в области феноменологической теории диффузии, которые помогли бы создать математический образ системы, записать и решить дифференциальные уравнения и найти такое соотношение между параметрами сорбции, пористой структуры, коэффициентов переноса, которые бы обеспечили комфортные условия во внутри-одеждном пространстве. Эта информация должна была бы послужить технологам путеводным маяком для создания новых более совершенных типов полимерных пористых материалов.

Хочется обратить внимание на еще одну интересную возможность, которую открывает совместный анализ экспериментальной и феноменологической сторон явления. Практика показывает, что при описании процессов следует обращать внимание не только на расчет констант диффузии, но и на совпадение экспериментальных кинетических зависимостей с аналитическими выражениями, получаемыми в рамках феноменологической теории. Отклонение этих зависимостей следует рассматривать не как несовершенства математической модели, а как информацию о структурно-химических особенностях строения исследуемого объекта.

Например, в сорбционных измерениях, выполняемых в изобарно-изотермических условиях, предполагается, что после установления заданных условий мгновенно на поверхности образца устанавливается равновесная растворимость диффузанта и в дальнейшем диффузия идет из этого слоя в его объем. По истечении некоторого времени достигается сорбционное равновесие и процесс диффузии завершается. Если на одной из стадий диффузионного насыщения материала наблюдается снижение веса образца, то это означает, что процесс сопровождается его кристаллизацией. Однако, если в течение длительного времени не устанавливается сорбцпонное равновесие, то это, в свою очередь, связано с химическими реакциями, происходящими в материале под влиянием окружающей среды или проникшего диффузанта. В последнем случае диффузионные измерения могут быть использованы для расчетов констант химических реакций.

Третья сторона «четырехугольника» касается молеку-лярно-кинетических аспектов диффузионных процессов. Перед ней стоит задача: проанализировать элементарный акт диффузии, затем, зная структурно-морфологические особенности строения исследуемого образца, рассчитать значения коэффициента диффузии, установить его количественную взаимосвязь с внешними параметрами, молеку-лярно-кинетическими характеристиками диффундирующих частиц и диффузионной среды. Потому, что в этом случае диффузионный процесс рассматривается, как правило, в однофазной гомогенной системе. Если речь идет о гетерогенной среде, состоящей из нескольких фаз, с разными диффузионными константами по отношению к проникающим в них частицам, то эта проблема массопереноса решается в рамках феноменологической стороны «четырехугольника».

Безградиентные методы

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 213
Бесплатно скачать Реферат: Технологические иследования процесса массопереноса - диффузии