Реферат: Технология Computer-to-Plate

барабанные, выполненные по технологии "внешний барабан", когда форма расположена на наружной поверхности вращающегося цилиндра;

планшетные, когда форма расположена в горизонтальной плоскости неподвижно или совершает движение в направлении, перпендикулярном направлению записи изображения.

Достоинствами устройств первого принципа построения являются достаточность одного источника излучения, благодаря чему достигается высокая точность записи; простота фокусировки и отсутствие необходимости юстировки лазерных лучей; большая оптическая глубина резкости; простота установки перфорирующего устройства для штифтовой приводки форм; простота замены источников излучения (исчезающая при использовании твердотельных лазеров).

Внешнебарабанные устройства имеют такие достоинства, как невысокая частота вращения барабана благодаря наличию многочисленных лазерных диодов; долговечность лазерных диодов; невысокая стоимость запасных источников излучения; возможность экспонирования больших форматов. К их недостаткам относят необходимость значительного числа лазерных диодов и, как следствие, такого же числа информационных каналов; необходимость трудоемкой юстировки; невысокую глубину резкости; сложность установки устройств для перфорирования форм.

И в том, и в другом случаях экспонирование термочувствительных формных пластин выполняется в инфракрасной области спектра. При этом заметны преимущества внешнебарабанного принципа, позволяющего максимально приблизить источник энергии к поверхности печатной формы. У устройств с записью на внутреннюю поверхность барабана расстояние от пластины до развертывающего элемента, как правило, соответствует радиусу барабана и становится тем больше, чем больше формат пластины. Для того чтобы генерировать исключительно маленькую и резкую точку на таком расстоянии, требуется дорогостоящая оптика.

При записи печатных форм скоростные характеристики формовыводных устройств существенно зависят от чувствительности формного материала. Внешние барабаны вращаются сравнительно медленно. Например, при записи термочувствительных материалов частота вращения барабана составляет 150 об. /мин. Более короткое время экспонирования печатной формы достигается увеличением числа лазерных диодов. При этом вероятность сбоев при работе возрастает с увеличением числа диодов.

Таким образом, если рассматривать тенденцию дальнейшего развития систем CTP, то можно заметить, что для печатных форм форматом до 70х100 см существуют одинаковые условия для обоих принципов записи изображений. Для больших форматов печатных форм определенные преимущества имеет техника с внешним барабаном. Планшетный способ широко применяется в области форматов до 50х70 см для газетного производства. Причем в последнем случае его преимущества объясняются именно небольшими форматами и достаточностью относительно низких разрешений.

В настоящее время для экспонирования печатных форм применяются следующие типы лазерных источников света:

1) аргон-ионный голубой лазер с длиной волны 488 нм;

2) гелий-неоновый красный лазер с длиной волны 633 нм;

3) маломощный красный лазерный диод с длиной волны 670 нм;

4) инфракрасный мощный лазерный диод с длиной волны 830 нм, который получил распространение для экспонирования термочувствительных пластин, требующих более высоких энергетических затрат, и применяется в устройствах с внешним барабаном;

5) инфракрасный мощный лазер ND YAG на иттрий-алюминиевом гранате с неодимом с длиной волны 1064 нм, используемый во многих системах CTP благодаря следующим достоинствам:

небольшая длина волны позволяет получить пятно диаметром менее 10 мкм и значительно повысить разрешение системы при записи;

минимальные потери при прохождении по световолоконным световодам и легкость модулирования упрощают конструкцию лазерных установок;

значительное число известных материалов (в особенности металлы) имеют более высокий коэффициент поглощения в области длин волн 1,06 мкм, что облегчает разработку формных пластин и повышает эффективность лазерной записи;

6) зеленый лазер на иттрий-алюминиевом гранате с двойной частотой ND YAG с длиной волны 532 нм;

7) фиолетовый лазерный диод с длиной волны 400-410 нм, который позволяет использовать обычные светочувствительные пластины, применяемые для контактного копирования.

В зависимости от типа источника лазерного излучения различные фирмы предлагают специальные формные пластины, которые можно разделить на фотополимерные, серебросодержащие, с гибридными слоями, с термочувствительными слоями. [3]

1.2 Формовыводные устройства для лазерной записи офсетных печатных форм

Основой лазерных формовыводных устройств является оптико-механическая система, содержащая в зависимости от конструкции один или несколько лазеров, модулятор, телескоп, фокусирующую линзу, поворотные зеркала, вращающийся зеркальный дефлектор, механизм крепления и перемещения формной пластины, механизм перемещения оптической или термической головки. [3]

1.2.1 Устройства с внешним барабаном

Запись изображения на формных пластинах в этих устройствах может осуществляться методом однолучевого или многолучевого сканирования. В первом случае устройства оснащены одним лазером, экспонирующим светочувствительный или термочувствительный слой формного материала. Для многолучевого сканирования записывающая головка формовыводного устройства содержит несколько лазеров (лазерных диодов). При этом число экспонирующих лазерных лучей может быть равно числу лазеров или быть больше этого числа.

Лазерное сканирующее устройство с однолучевой записью формной пластины (рис.2) работает следующим образом. Формная пластина 16 закрепляется на барабане 15, который установлен на станине 14, и вращается электродвигателем постоянного тока 12 через механизм привода 13. На одном валу с барабаном 15 расположен оптоэлектронный преобразователь 11 угловых перемещений в цифровой код. Вдоль образующей барабана на станине установлен ходовой винт 9, на валу которого расположен шаговый электродвигатель 10. При работе шагового электродвигателя 10 ходовой винт 9 вращается, и благодаря этому каретка 7 с записывающей головкой, содержащей фокусирующую линзу 6 и зеркало 3, перемещается вдоль образующей барабана. В качестве источника излучения используется твердотельный YAG-лазер 1, работающий в ИК-диапазоне спектра на длине волны 1,064 нм с выходной мощностью 15-20 Вт и оснащенный системой охлаждения 8. Лазерный луч модулируется акустооптическим модулятором 2 и далее через систему зеркал 3, диафрагму 4, телескоп 5 попадает в линзу 6, которая фокусирует его в пятно малого размера на поверхности формной пластины, закрепленной на вращающемся барабане 15. Развертка по строке осуществляется вращением барабана и контролируется оптоэлектронным преобразователем угловых перемещений 11, а развертка по кадру - вращением (с помощью шагового электродвигателя 10) прецизионного ходового винта 9, по которому движется каретка 7 записывающей головки.

Для требуемого качества записи печатных форм необходима точная фокусировка лазерного луча в точке его падения на поверхность формной пластины, расположенной на барабане. На геометрические размеры точки оказывают влияние погрешности при изготовлении и установке барабана (в наибольшей степени - отклонения барабана от идеальной формы и эксцентриситет), различные виды биений, возникающие из-за износа подшипников в опорах вращения. Из-за этих факторов при вращении барабана расстояние от поверхности формной пластины до записывающей головки изменяется на величину D, что приводит к расфокусировке лазерного луча. В связи с этим современные формовыводные устройства оснащены системой поддержания положения оптимальной фокусировки пятна лазерного излучения на поверхности формного барабана (рис.3).

Система работает следующим образом. Лазерное излучение от источника 1, проходя через призму 5 и объектив 7, фокусируется в пятно необходимого размера на поверхности вращающегося формного барабана 2. Параллельно оси вращения барабана по направляющей 3 движется каретка 4 для продольного перемещения сфокусированного лазерного пятна вдоль образующей цилиндра формного барабана. На каретке 4 размещена дополнительная каретка 6 с жестко установленными на ней фокусирующим объективом 7 и оптической частью системы поддержания оптимальной фокусировки 8. Дополнительная каретка 6 может перемещаться относительно каретки 4 в направлении, перпендикулярном оси вращения формного барабана 2, с помощью привода 9, укрепленного на каретке 4.

В случае оптимальной фокусировки лазерного излучения на поверхности формного барабана оптическая часть системы симметрично освещает зоны а и б фотоприемника 13. При уходе сфокусированного лазерного пятна из положения 14 оптимальной фокусировки в положения плоскостей 15 или 16 пятно на двухзонном фотоприемнике 13 смещается вправо в зону б при положении 15 или влево в зону а при уходе плоскости фокусировки в положение 16. В том и другом случаях освещенности зон а и б становятся различными, что изменяет соответствующие фототоки.

На выходе фотоприемника находится устройство, которое формирует электрический сигнал, пропорциональный разности освещенностей зон а и б, который имеет либо положительный, либо отрицательный знак. После усиления мощности этот сигнал поступает на привод 9 перемещения дополнительной каретки, являющийся выходом цепи обратной связи. Перемещение дополнительной каретки 6 приводит пятно лазерного излучения в положение 14 оптимальной фокусировки. Разностный электрический сигнал становится нулевым.

Система поддержания положения оптимальной фокусировки характеризуется величиной допустимого рабочего хода D дополнительной каретки 6, в пределах которого достигается фокусировка. Для оптической части системы (рис.3б) поддержания положения оптимальной фокусировки найдено следующее соотношение между D и параметрами элементов оптической части:

К-во Просмотров: 454
Бесплатно скачать Реферат: Технология Computer-to-Plate