Реферат: Технология монтажа осевых насосов и вентиляторов
Во-вторых, разность давлений между лицевой стороной профиля и тыльной стороной соседнего профиля вызывает движение жидкости вблизи стенки от лицевой стороны к тыльной стороне соседнего профиля. Это вторичное течение происходит вблизи торцовых стенок, где скорости малы, и поэтому градиент давления не может быть уравновешен действием центробежных сил, возникающих при повороте потока в межлопастных каналах. В результате такого вторичного течения вблизи торцовых стенок образуются вихревые движения (рис.7). Направления этих парных вихрей противоположны.
Рис.7. Парные вихри и вихри в зазорах.
Поскольку на образование парных вихрей расходуется часть энергии потока, тол к. п. д. решетки снижается. Кроме того, потери могут дополнительно увеличиваться за счет отрыва пограничного слоя с тыльной стороны лопастей, поскольку вторичные течения вызывают набухание пограничного слоя на этой стороне.
Опыты показывают, что при отношениях ,l /t >1,5 парные вихри не смываются, и поэтому величину вторичных потерь, вызванных парными вихрями и трением о торцовые стенки, можно считать не зависящей от высоты лопастей. На основании этого можно принять, что относительная величина концевых потерь обратно пропорциональна высоте лопастей, и определять к. п. д. ступени (совокупности рабочих и спрямляющих лопастей) по формуле Г. Флюгеля:
ηl =η (1 – kl \l ),
где η – к. п. д. ступени с учетом только профильных потерь (конечная высота лопастей не учитывается); ηl – к. п. д. при конечной высоте лопастей, но без учета влияния зазора; k l – опытный коэффициент.
Величина опытного коэффициента k l зависит от относительного шага решетки, угла изгиба профилей и угла атаки. На расчетном режиме работы ориентировочно можно принимать k l ≈ 1мм.
Следует отметить, что данная формула не корректна, ибо противоречит теории подобия: опытный коэффициент k l в этой формуле – размерная величина. Однако попытку «усовершенствовать» формулу Флюгеля введением в нее вместо высоты лопастей l относительной величины l / b также нельзя признать удачной.
Наличие радиального зазора между рабочими лопастями и корпусом приводит к перетеканию жидкости через зазор от лицевой стороны профиля к тыльной (рис.6). Оно также вызывает образование вихревого движения, однако направление вращения вихря в зазоре противоположно направлению вращения смежного парного вихря. Между этими двумя вихревыми движениями существует сложное взаимодействие. Действительно, увеличение зазора приводит к возрастанию интенсивности вихря в зазоре, однако при этом уменьшается разность давлений между смежными поверхностями соседних профилей, что приводит к снижению интенсивности соседнего парного вихря. Опыты показывают, что к. п. д. ступени при возрастании зазора до 1% от высоты лопастей остается практически неизменным. Это означает, что суммарная интенсивность вихря в зазоре и смежного парного вихря остается примерно постоянной.
Общая формула, учитывающая влияние всех концевых потерь может быть выражена таким образом:
ηδ,l = η[1 – (k l + kδ δ) /l + 0,01 kδ ],
которая применима при δ ≥ 0,01.
Одновременно со снижением к. п. д. снижается развиваемый напор, но в большей степени, чем к. п. д., поскольку вторичные потери вызывают увеличение среднего по высоте лопастей угла отставания потока. Другими словами, вторичные течения приводят к уменьшению теоретического напора. Опыт показывает, что уменьшение напора наблюдается и при очень малых зазорах. Дело в том, что увеличение зазора всегда приводит к уменьшению разности давлений по обе стороны лопасти и, следовательно, к увеличению угла отставания потока.
1.4. Крепление оборудования к фундаментам.
Компрессоры, насосы, вентиляторы и другое оборудование закрепляют на фундаменте фундаментными и анкерными болтами.
Фундаментный болт (рис.8,а) – стальной стержень, нижняя закладная часть которого изогнута, разветвлена (рис.8,б) или заершена для лучшего сцепления с бетоном. Верхняя часть болта имеет резьбу для гайки. Фундаментные болты при монтаже заливают бетоном, поэтому, например, при отрыве выступающей части болта его необходимо вырубить из бетона.
Рис.8. Способы крепления оборудования к фундаментам фундаментным болтом (а), фундаментным болтом, заделываемым гнездо (б), анкерным болтом (в):
1- фундамент, 2-колодец, 3-рама, 4, 7-фундаментный и анкерный болты, 5-гайка фундаментного болта, 6-подливка бетона, 8-анкерная плита.
Анкерный болт (рис.8,в) применяют преимущественно для крепления крупного оборудования (например, компрессоров большой производительности) к фундаменту анкерный болт в бетон не заделывают, в случае необходимости его легко заменить. На фундаментах анкерный болт закрепляют с помощью анкерной плиты, которую заделывают в фундамент в процессе его изготовления. Анкерный болт соединяют с анкерной плитой или с помощью резьбы, или путем поворота Т-образной головки болта ниже щели анкерной плиты.
Применение анкерных болтов по сравнению с фундаментными более трудоемко и их изготовление дороже, но из-за удобства при эксплуатации и монтаже их широко применяют.
При затягивании гайки у фундаментных и анкерных болтов рама прижимается к фундаменту силой, равной сумме веса оборудования и усилия затяжки болта. Затягивание фундаментных или анкерных болтов должно быть таким, чтобы сила трения, создаваемая весом агрегата и усилием затяжки болта, была больше усилий сдвига агрегата во время работы. В этом случае болт будет работать в благоприятных условиях - только на разрыв.
Фундаментные или анкерные болты выпускают заводы-изготовители машин. Если болты отсутствуют, их изготовляют диаметром, равным диаметру отверстий в лапах рамы машины.
Если нагрузка на болты неизвестна, длину анкерных болтов принимают равной 15 диаметрам болта, а длину фундаментных болтов – 20 диаметрам.