Реферат: Технология продуктов общественного питания 3
При определении влияния температуры образца на изменение количества слабосвязанной влаги отмечено, что при нагреве соленого мяса при всех исследуемых значениях рН до температуры 45 °С наблюдаются некоторое уменьшение ее количества (см. рис. 3) и повышение содержания неотпрессованной влаги (см. рис. 4). По-видимому, процесс денатурации белков сопровождается повышением водосвязывающей способности, хотя и в небольшой степени. Это подтверждается данными, полученными П. Л. Приваловым и Г. М. Мревлишвили, которые свидетельствуют о том, что гидратация макромолекул действительно изменяется при денатурации, причем это изменение всегда положительно — гидратация денатурированных макромолекул больше, чем нативных. Этот факт свидетельствует о тесной взаимосвязи между конформацией макромолекул и состоянием воды в прилегающих к ним слоях. Обычно этим обстоятельством пренебрегают при рассмотрении изменений водосвязывающей способности и конформационных превращений макромолекул в воде, что вряд ли допустимо.
Нагрев образца до температуры от 45 до 50 о С вызывает резкое увеличение количества отпрессованной и снижение неотпрессованной влаги.
Рис. 3. График зависимости количества отпрессованной влаги от температуры и рН исходного фарша
В интервале температур 50...55 °С количество отпрессованной и неотпрессованной влаги не изменяется. Это свидетельствует о том, что изменение водоудерживающей способности происходит ступенчато. Дальнейшее повышение температуры до 65 °С при рН 5,25...6,00 и до 75 °С при рН 6,25...7,00 вызывает при прессовании значительное снижение количества неотпрессованной влаги и увеличение отпрессованной.
При температуре выше 65 (75) °С происходит дополнительное уплотнение структуры в результате образования дисульфидных сшивок и выпрессовывания влаги в процессе нагрева. При этом ведущая роль в формировании белкового каркаса мясопродукта принадлежит миозину.
Повышение температуры до 75 °С вызывает изменение закономерностей количества отпрессованной и неотпрессованной влаги на противоположные, что, по-видимому, означает завершение процесса коагуляции белков. Дальнейший нагрев фарша до 135 °С способствует снижению количества отпрессованной и увеличению неотпрессованной влаги. Интенсивность этих изменений зависит от рН сырья, температур образца и греющей среды. Так, по достижении образцом температуры 90 °С потери массы и снижение количества отпрессованной влаги превосходят соответствующие значения, достигаемые при температуре греющей среды 100 °С. Такое явление можно объяснить следующим образом: по достижении температуры 90 °С дезагрегация коллагена в обоих случаях пока еще незначительна, а продолжительность нагрева в интервале температур 75...90 °С существенно различается и составляет 395 с при температуре греющей среды 100 о С против 34 с при 145 °С. Таким образом, длительность тепловой обработки при исследуемых режимах оказывает большее влияние, чем температура греющей среды. В целом снижение количества отпрессованной и увеличение неотпрессованной влаги могут быть объяснены развитием процесса дезагрегации коллагена.
Влияние рН мясного фарша. Кроме изменения структуры воды, денатурационных изменений мышечных белков и дезагрегации коллагена существенное влияние на изменение водоудерживающей способности оказывает рН сырья. Результаты исследований изменения рН мяса в процессе нагрева в зависимости от температуры образца и первоначальной величины рН представлены на рис. 5.
На изменение рН в процессе нагрева мяса более сильное влияние, чем температура греющей среды, оказывают рН исходного сырья и температура образца. Несмотря на то что с повышением последней прирост рН возрастает (величина прироста зависит от рН исходного фарша), водоудерживающая способность его снижается, так как параллельно происходит сдвиг изоэлектрической точки фибриллярных белков к более высоким значениям рН.
Рис. 4. График зависимости количества неотпрессованной влаги от температуры и рН исходного фарша (температура греющей среды 145 °С)
Состав мясных и костных бульонов из мяса птицы и субпродуктов. Качественный состав бульонов, приготовляемых из мяса и мясопродуктов, одинаков, в него входят экстрактивные и минеральные вещества, белки, липиды, витамины. Белки представлены в основном глютином, который образуется в результате деструкции коллагена в условиях влажного нагрева. Белки мышечных волокон переходят в бульон в количествах, не превышающих 0,2 % массы мясного сырья. Эмульгированный жир содержится в бульонах, приготовляемых из жирного мяса (грудинка, покромка), жирной птицы (утки, гуси), языков; количество его не превышает 0,8 % массы мясного сырья. Таким образом, основными водорастворимыми компонентами мясных и костных бульонов являются экстрактивные, минеральные вещества и глютин. Количественное содержание указанных компонентов в бульоне зависит от вида мясного сырья, использованного для варки.
Рис. 5. График зависимости изменения рН мясного фарша в процессе нагрева до заданной температуры от исходного рН (температура греющей среды 145 °С)
Вопрос № 4
Виды и прочность контактов между частицами и тиксотропия
Тиксотропия — способность некоторых дисперсных систем самопроизвольно восстанавливать структуру, разрушенную механическим воздействием. Она свойственна дисперсным системам и обнаружена у многих полуфабрикатов и пищевых продуктов.
Реологические свойства продукта во многом определяются его структурой и текстурой. Структура — от лат. structura -совокупность устойчивых связей объекта, обеспечивающих его целостность и тождественность самому себе; текстура - от лат. textura — ткань, связь, строение.
Многие пищевые массы помимо твердого и жидкого состояний обладают структурами, которые по физическим свойствам занимают промежуточное положение. К ним относятся белковые и углеводные студни, суспензии разной концентрации (пасты, эмульсии, пены и др.).
Наличие внутренней структуры придает таким системам определенные механические свойства — упругость, пластичность, вязкость, прочность, которые объективно характеризуют их консистенцию. Механические свойства зависят от природы входящих в систему веществ и их соотношения, а также от сил взаимодействия между ними.
Таб. 2. Типы дисперсных систем пищевых продуктов (по А. В. Горбатову и др., 1982)
Дисперсион- ная среда |
Дисперсная фаза |
Дисперсная система |
Продукт (в том числе сырье, полуфабрикаты) |
Газ | Жидкость | Жидкий аэрозоль | Экстракт кофе при распылительной сушке |
Твердое тело | Твердый аэрозоль | Мука при пневмо- транспортировании | |
Жидкость | Газ | Пена | Белковая пена |
Жидкость | Эмульсия | Молоко, майонез | |
Твердое тело | Золь | Какао-масса | |
Суспензия | Фруктовый сок | ||
Твердое тело | Газ | Твердая пена, пористое твердое тело | Мороженое, безе, сухари |
Жидкость |
Твердая эмульсия, пористое твердое тело, заполненное К-во Просмотров: 355
Бесплатно скачать Реферат: Технология продуктов общественного питания 3
|