Реферат: Технология производства полиакрилонитрила

При обработке полиакриламида раствором соды степень омыления достигает 30–40%. По деструктивному действию омыляющие агенты можно расположить в следующий возрастающий ряд: NaOH (1%-ный), НС1, НСООН, Na2 CO3 , H2 SO4 , H3 PO4 . При взаимодействии полиакрилонитрила с гидроксиламином при 50–100°С протекает реакция образования амидоксимных групп с последующим выделением аммиака и образованием групп гидроксамовой кислоты:

Для реакции применяется раствор сернокислого гидроксиламина и едкого натра в количестве, достаточном для выделения – 99,2% гидроксиламина. Полимер после реакции содержит как группы гидроксамовой кислоты, так и непрореагировавшие нитрильные группы. Наличие в полимере групп гидроксамовой кислоты способствует лучшему окрашиванию полиакрилонитрильного волокна.

2.2 Физические

Полиакрилонитрил в отличие от других акриловых смол не растворяется в обычных растворителях. Эта особенность объясняется значительными межмолекулярными силами, возникающими вследствие полярной природы – С = N-групп. Представления о влиянии водородных связей в полимерах на их растворимость в полярных растворителях и установление растворимости полиакрилонитрила в гидротропных растворителях (например, в концентрированном водном растворе роданистого кальция), послужили толчком к поискам высокополярных растворителей.

Так как группа – CN является сильно полярной, то полиакрилонитрил растворяется только в очень полярных растворителях, например, в диметилформамиде, диметилацетамиде, этиленкарбонате, диметилсульфоксиде, концентрированных водных растворах бромистого лития, роданистого натрия или кальция, смеси ZnCl2 +CaCl2 , концентрированных HNO3 и H2 SO4 (в последнем случае группы – CN гидролизуются).

Показатель растворимости полиакрилонитрила =30,8*10-3 (Дж/м3 )0,5 , а воды =46,4*10-3 (Дж/м3 )0,5 напомним, что растворение полимера в растворителе происходит при значениях 4 (Дж/м3 )0,5 , т.е. должен быть почти равен , что для воды и полиакрилонитрила не наблюдается [4, C. 99].

При нагревании полиакрилонитрил растворяется в N-формилпиперидине (170–180°С), цианацетамиде (165–170°С), N-метил-иианацетамиде (180–190°С), этиленциангидрине (165–170°С), однако при охлаждении этих растворов образуются гели (происходит застудневание). Предполагается, что механизм застудневания растворов полиакрилонитрила заключается в образовании трехмерной сетки за счет возникновения вторичных межмолекулярных связей. Скорость застудневания повышается при увеличении концентрации растворов, молекулярного веса полимера и количества введенной воды [6, С. 43].

Растворители способные разрушить межмолекулярные связи в полимере это диметилформамид и тетраметиленсульфон, динитрил малоновой и янтарной кислот, смеси, содержащие более 60% этиленкарбоната и воды, диметилцианамид, концентрированные водные растворы некоторых солей, например бромистого лития, роданистого натрия и кальция, хлористого цинка.

Для снижения растворимости полиакрилонитрил обрабатывают водным раствором формальдегида.

Таблица 1 Свойства полиакрилонитрила

Свойство Значение
Плотность, г/см3 1,14–1,15
Показатель преломления, n 1,49–1,52
Температура размягчения (с одновременной деструкцией), °С 220–230
Удельная теплоемкость, кДж/(кг*К) [кал/(г*°С)] 1,51
Прочность при растяжении (для волокна), Мн/м2 (кгс/мм2 ) 600 (60)
Относительное удлинение, % 10–35
Влагопоглощение отпрессованного образца, % 1–2
Дипольный момент, к*м (D) 1,13–10-4
Диэлектрическая проницаемость при
50 гц 6,5
1 Мгц 4,2
Удельное объемное электрическое сопротивление, Том*м (Ом*см) 1 (1014 )
Тангенс угла диэлектрических потерь при
50 гц 0,11
1Мгц 0,03

Для полиакрилонитрила характерны две температуры стеклования. Первая из них лежит в области от 86 до 96,5 °C. Зависимость ее от молекулярной массы хорошо описывается уравнением Флори:


где а=(2,8±0,1)*105 ; Т =(96,5±1,0)°С, т.е. значение при М . Вторая температураpa стеклования составляет около 140°С и определяется сдвигом равновесия дипольного взаимодействия нитрильных групп [6, С. 43].

2.3 Термические

Полиакрилонитрил при нагревании в атмосфере азота не претерпевает никаких изменений до 200°С, но при более высокой температуре происходит его размягчение и появление газообразных продуктов, главным образом аммиака NH3 , и водорода Н2 . При 270°С наблюдается также выделение цианистого водорода HCN. Из жидких продуктов распада полимера можно выделить вещества, содержащие группы – NH2 и – С = N. Также присутствуют винилацетонитрил и вещества, являющиеся димерами, тримерами и тетрамерами акрилонитрила. Полимер окрашивается и становится нерастворимым.

Энергия активации термической деструкции 130 кДж/молъ (31 ккал / молъ).

При нагревании растворов полиакрилонитрила в диметилформамиде в токе воздуха, кислорода или в инертной атмосфере в течение 30–40 часовполиакрилонитрил также окрашивается в желтый и далее в темно-коричневый цвет; образующиеся при этом сопряженные системы растворимы в диметилформамиде [6, С. 44].

При температурах выше 700°С полиакрилонитрил подвергается химическому превращению в полимер циклической структуры, содержащий сопряженные двойные связи. В зависимости от условий пиролиза (вакуум или воздух, водород, азот и аммиак под давлением) образуются продукты с различными свойствами. В ряде случаев может быть получен продукт графитовой структуры, обладающий свойствами полупроводников (удельная электропроводность 10-10 – 10-13 Мом/см).

При длительной термической обработке полиакрилонитрильного волокна или ткани в азоте и на воздухе получен термостойкий материал, выдерживающий кратковременное воздействие пламени горелки и сохраняющий достаточную прочность.

3. Производство полиакрилонитрила

Акрилонитрил в присутствии инициаторов легко вступает в редакцию полимеризации, сопровождающуюся выделением 73,3 кДж/моль тепла.

В качестве инициаторов применяют пероксиды, азо- и диазосоединения, а также элементоорганические соединения [1, С. 132].

Кислород ингибирует полимеризацию акрилонитрила, поэтому процесс проводят в среде азота. Скорость реакции значительно возрастает в присутствии следов ионов меди или железа.

При полимеризации акрилонитрила используют также окислительно-восстановительные системы. Чаще всего применяют персульфат аммония с тиосульфатом или гидросульфитом натрия, что позволяет проводить реакцию при более низких температурах и получать полимер с более высокой молекулярной массой.

В промышленности полиакрилонитрил получают радикальной полимеризацией акрилонитрила в гетерогенных или гомогенных условиях. Производство полиакрилонитрила может быть осуществлено как периодическим, так и непрерывным методами.

Непрерывный технологический процесс получения полиакрилонитрила состоит из стадий приготовления растворов, полимеризации акрилонитрила, демономеризации дисперсии и конденсации акрилонитрила, фильтрации, промывки и сушки полимера.

полиакрилонитрил химический карбоцепный

Таблица 2 Нормы загрузки компонентов

Аппарат 4
Персульфат калия, кг 3,0
Вода обессоленная, м3 0,44
Аппарат 5
Метагидросульфит натрия, кг 0,1
Вода обессоленная, м3 0,050
Аппарат 6
НАК, м3 0,0224
Раствор персульфата калия, м3 0,073
Раствор метагидросульфита натрия, м3 0,0246

К-во Просмотров: 255
Бесплатно скачать Реферат: Технология производства полиакрилонитрила