Реферат: Технология выбора эффективных тактик преподавателя при моделировании процесса обучения
С.П.Вовк
Представим процесс обучения в виде последовательности моментов управления tj , j=1,N. Моделирование взаимодействия "педагог-студент" в момент контроля знаний по j порции учебного материала в условиях несовпадающих многокритериальныхоценок предлагается провести с использованием аппарата четкихинечеткихигр.При представления ситуации обучения в виде игровой ситуации предлагается следующий алгоритм поиска оптимальных ( или эффективных)тактик.
1. Представить схему взаимодействия "педагог-студент" в виде дерева позиционной игры.
2. Выявить множества тактик педагога A1 и студента A2 .
3. Произвести оценку исходов партий на универсальной шкале результатов обучения wiÎWUN. Исходы оцениваются по степени достижения локальной цели обучения. Для представителей одного класса локальная цель представляется в виденекоторого диапазона рейтинг-чисел
4. Перейти к п.5 при возможности однозначнойоценки исходов всех партий. Перейти к п.7. в случае неоднозначностиоценкинекоторых исходов, т.е.исходов, оцененных преподавателемв виде нечеткого интервала [b1,b2].
5.Определяются ожидаемые выигрыши игроков /1/
,
где Gi (a1,a2) - ожидаемый выигрыш при стратегии преподавателя a1Î A1, стратеги студента a2Î A2 и случайном ходе h. p(h) определяются в ходе педагогического эксперимента.
6. Представить схему взаимодействия в виде матричной формы игры /1/
Г=( A1,A2,G1,G2).
Поиск оптимальных решений осуществить с использованием традиционных методов решения матричных игр: при наличии "седловой точки" в матрице G существует решение в чистых стратегиях, при ее отсутствии - решениев смешанных стратегиях. Перейти к п.45.
7. Представить различную результативность достижения цели при использовании в позиционном дереве i уровней сложности заданий ( “малая”, ”средняя”, ”высокая”) в виде соответствующих исходов 0,6 i, 0,8i , 1iна шкале оценок i уровня сложности заданий, т.е. в виде нечетких чисел b.
8. Произвести перевод исходов, представленных педагогом-экспертом в виде нечетких интервалов [b1,b2], и нечетких чисел b на единую шкалу оценки результата WUN. Аппроксимировать нечеткие интервалы [b1, b2]UN и нечеткие числаbUN с помощью S-образных функций принадлежности mwна единой шкале оценки результата WUN .
9. Представить на единой шкале результата итервалы [b1,b2]сjUN, соответствующиепромежуточным целям для представителейклассов.
10. Произвести аппроксимациюс помощью S-образных функций принадлежности mcj.
11. Определить степени уверенности преподавателя в том, что истинным состоянием студента является cj, j=1,m, определив возможность его классификациикаждым из существующих классов C={c1,...,cm} с помощьюстепени разделения нечетких множеств mwи mcj. Описание свойства, что результат есть [b1,b2]сjUN описать уравнением назначения возможности Пm = [b1,b2]сjUN . Определить по реальному результату студента w,описываемомуфункцией принадлежности mw, мерувозможности Пm с помощью соотношения /5/
Пcj(w)=POSS(m есть w| m есть cj)=sup(mwÙmcj). wÎWUN
12. Упорядочить состояния, в которых может находиться студент, по убыванию их вероятностей p(c1)³ ...³ p(cm). Оценить степень истинности утверждения a=“состояния C упорядочены по убыванию вероятности” /3/ как Т(a)=1.
13. Определить полезности u( w=0,6i), u(w =0,8i), u(w =1i) нашкале результата Wi, соответствующей уровню сложности задания i, путем экспертного опроса преподавателя.
14. Выбрать дерево позиционной игры, описывающее взаимодействие “педагог-студент” для обучаемого класса c1 .
15. Определить полезности uf для " af ÎA1. Тактика af представляет последовательность заданий различных уровней сложности во время каждой из k попыток общения со студентом af =d1,...,d3 , где dk - k -ый ход преподавателя.
16. Построить функцию полезности результата U(w) на универсальной шкале wÎWUN как нижнюю границу на множестве полезностей тактик
{uf}
17. Построить зависимость функции полезности результата для каждого из возможных состояний студента cjÎC, j=1,m. Для этого m раз выполнить п.15-16для позиционных деревьев, описывающих взаимодействие педагог со студентом соответствующего класса.
18. Определить на на парах "действие-состояние” позиционного дерева, с помощью которого производится моделирование взаимодействия между педагогом и студеном при контроле знаний по j порции учебного материала, , предпочтения педагога /3/ ufj =u(af,cj) относительно тактик af ÎA при условии, что истинным состоянием обучаемого является принадлежность к классу cj , используя ранее определенную зависимость функции полезности.
19. Произвести анализ тактик преподавателя с помощью отношения четкого доминирования по полезности. Если все тактики можно упорядочить с помощью четкого доминирования по полезности перейти к п.44.Если среди тактик существует хотя бы одна af четко доминирующая над остальными, то принятьmД (ag,af)=0 "agÎA1 и перейти к п.29. Если отношение четкого доминирования по полезности не позволяет упорядочить тактики, перейти к п.20.
20. Задать нечеткие оценки полезности ufj и ugj в виде нечетких чисел с соответствующими функциями полезности для пары сравниваемых тактик (af,ag) "af,agÎA1 .
21. Определить нечеткие числа, описывающие полезности, в виде .
--> ЧИТАТЬ ПОЛНОСТЬЮ <--