Реферат: Температурная зависимость проводимости полупроводника
Температурная зависимость проводимости полупроводника
Выполнил: Романов А.В. – группа ЗЭС-1-04___________(дата,подпись)
Проверил: ________________________________________(дата,подпись)
Домашний адрес:
432606
г. Елабуга
ул. Окружное шоссе д. 35 кв. 69
Дата отсылки:
Казань 2006
Полупроводники - это вещества, имеющие при комнатной температуре удельную электрическую проводимость в интервале от 10-8 до 106 Ом-1 м-1 , которая в сильной степени зависит от вида и количества примеси и структуры вещества, а также от внешних условий: температуры, освещения, внешних электрических и магнитных полей, облучения. Электропроводность твердых тел в современной физике объясняется на основе зонной теории. На рис. I показаны упрощенные диаграммы энергетических зон собственного, акцепторного и донорного полупроводников.
Кристаллы полупроводников неизбежно в реальных условиях обладают определенным количеством посторонней примеси, даже если требуется получить материал очень высокой степени чистоты. Примеси также специально вводятся либо во время роста кристаллов с целью получить полупроводник с заданными электрическими свойствами, либо - при изготовлении приборных структур. Такие полупроводники называются легированными или примесными. Атомы примеси, отличаясь от атомов основного кристалла валентностью, создают уровни разрешенных энергий электронов в запрещенной зоне, которые либо могут поставлять электроны в зону проводимости, либо принимать на себя электроны из валентной зоны. Эти процессы мы рассмотрим в дальнейшем. В данном разделе нас будет интересовать идеализированная модель полупроводника, в котором отсутствуют какие-либо примеси. Такие полупроводники называются собственными.
При нагревании проводимость полупроводников резко возрастает. Температурная зависимость проводимости s собственного полупроводника определяется изменением концентрации n и подвижностиэлектронов m- и дырок m+ от температуры:
s = e ( n - m - + n + m + ) ( 1 )
Подвижность носителей заряда в полупроводниках зависит от температуры сравнительно слабо и с ее возрастанием уменьшается по закону m~T –3/2 . Это объясняется тем, что с повышением температуры возрастает число столкновений в единицу времени, вследствие чего уменьшается скорость направленного движения носителей заряда в поле единичной напряженности.
Рассмотрим донорный полупроводник. Вследствие малой концентрации электронов проводимости полупроводники подчиняются классической статистике Максвелла-Больцмана. Поэтому в области низких температур для концентрации электронов в зоне проводимости с одним видом примеси имеем:
n = A T 3/2 e - D W / kT , ( 2)
где А - коэффициент, не зависящий от Т; DW - энергия активации примеси, то есть энергетический интервал между донорным уровнем и нижним краем зоны проводимости ( рис. Iв)К - постоянная Больцмана.
Рассмотрим упрощенную зонную модель собственного полупроводника, изображенную на рис. 1. Этой моделью мы в основном будем пользоваться в дальнейшем. В данной модели энергия электронов положительная и отсчитывается вверх по оси ординат. Энергия дырок отрицательная и отсчитывается вниз. Под осью абцисс подразумеваются пространственные координаты, а также по этой оси, в зависимости от условий задачи, могут откладываться температура, концентрация примеси, указываться направление электрического поля. Валентная зона и зона проводимости ограничены прямыми, обозначающими: Ev - потолок валентной зоны; Ec - дно зоны проводимости. Выбор начала отсчета энергии электрона произволен, как правило, она отсчитывается от потолка валентной зоны. Ширина запрещенной зоны определяется как разность Eg = Ec - Ev .
Рассмотрим теперь в чем состоит физическая причина резкого отличия в температурной зависимости проводимости полупроводников и металлов.
Рис. 1. Простая зонная модель собственного полупроводника: Ev - потолок валентной зоны; Ec - дно зоны проводимости.
Eg = Ec - Ev - ширина запрещенной зоны. G - генерация электронно-дырочной пары, R - рекомбинация электронно-дырочной пары.
Волнистыми стрелками показаны процессы поглощения и испускания фотона при световой генерации и излучательной рекомбинации соответственно.
При температуре Т > 0 средняя энергия фонона равна (k - постоянная Больцмана), например, при комнатной температуре Т = 300 К она равна 0,039 эВ. Однако в силу распределения Максвелла - Больцмана существует конечная вероятность того, что фонон имеет энергию Eg, которая может значительно превышать среднюю, и эта вероятность пропорциональна . Электроны постоянно обмениваются энергией с фононами в процессе столкновений. Естественно, в стационарных условиях электронная подсистема кристалла в целом находится в тепловом равновесии с колебаниями решетки, однако отдельные электроны могут иметь энергию много больше средней. Тепловым возбуждением электрона называется акт передачи энергии от фонона электрону такой, что происходит разрыв ковалентной связи.
Если электрон получит от фонона энергию больше или равную Eg он может "заброситься" из валентной зоны в зону проводимости, где он становится свободным и может участвовать в переносе заряда при приложении внешнего электрического поля. Одновременно с переходом электрона в зону проводимости в валентной зоне образуется ІсвободнаяІ дырка, которая также участвует в электропроводности. Таким образом, в собственных полупроводниках свободные электроны и дырки рождаются парами, этот процесс называется генерацией электронно-дырочных пар (рис. 1). Наряду с этим происходит обратный процесс - взаимная аннигиляция электронов и дырок, когда электрон возвращается в валентную зону. Этот процесс называется рекомбинацией электронно-дырочных пар. Число генерированных (рекомбинированных) пар носителей заряда в единице объема в единицу времени называется темпом генерации-G (рекомбинации - R). В стационарных условиях темпы тепловой генерации и рекомбинации равны, то есть G = R (1)
Заметим, что генерация электронно-дырочных пар может происходить и при облучении полупроводника светом частотой v, такой, что энергия фотона удовлетворяет условию
(3)
При световой генерации электрон поглощает фотон (рис. 1). При обратном процессе рекомбинации высвободившаяся энергия, равная Eg, может либо передаваться от электрона обратно решетке (фонону), либо уноситься фотоном. Могут также одновременно рождаться фононы и фотоны, но тогда, в силу закона сохранения, их парциальные энергии меньше Eg. Если энергия уносится фотоном, то этот процесс называется излучательной рекомбинацией. Световая генерация и излучательная рекомбинация лежат в основе работы целого класса оптоэлектронных полупроводниковых приборов - источников и приемников излучения, которые мы в данном курсе не имеем возможности рассматривать.
Очевидно, что при тепловой генерации более вероятны переходы электронов с одного из верхних уровней валентной зоны, если они заняты электронами, на один из нижних уровней зоны проводимости, - если они свободны, поскольку для таких переходов требуется меньшая энергия. Отсюда следует, что темп генерации G пропорционален: числу возможных занятых состояний электронов Nv вблизи потолка валентной зоны; числу незанятых уровней Nc вблизи дна зоны проводимости (физический смысл Nv и Nc будет рассмотрен в дальнейшем) и вероятности электрону иметь энергию Eg :
(4)
где, a - коэффициент пропорциональности, зависящий от частоты столкновений фононов и электронов. С другой стороны, темп рекомбинации R пропорционален вероятности "встречи" носителей, т.е. произведению концентраций электронов n и дырок р (g - коэффициент пропорциональности):
(5)
так как для собственного полупроводника n = p. В стационарном случае имеет место равенство (2), тогда
(6)
Отсюда
(7)
--> ЧИТАТЬ ПОЛНОСТЬЮ <--