Реферат: Теореми Ролля Лагранжа Коші Правило Лопіталя Формула Тейлора для функції однієї та двох змін

2) крива, що є графіком функції, є гладкою кривою (крива називається гладкою, якщо в кожній її точці можна провести дотичну);

3) крайні точки графіка знаходяться на однаковій висоті від .

6.12. 2. Теорема Лагранжа

Теорема. Якщо функція : 1) задана і неперервна на відрізку ; 2) диференційована в інтервалі , то тоді всередині інтервалу знайдеться хоча б одна точка , в якій справджуються рівність

. (6.73)

Д о в е д е н н я. Розглянемо функцію

,

що задовольняє всім умовам теореми Ролля. Справді, на відрізку є неперервною (як різниця двох неперервних функцій), а всередині інтервалу має похідну

;

.

Отже, існує точка в якій або, що саме,

звідси

Теорему доведено.

Геометрична інтерпретація теореми Лагранжа. Нехай графік функції зображено на рис. 6.10. Відношення є кутовий коефіцієнт січної , а - кутовий коефіцієнт дотичної, проведеної до графіка функції в точці з абсцисою . Обидва кутові коефіцієнти однакові. Отже, дотична і січна паралельні. Тому висновок теореми Лагранжа можна сформулювати так: на дузі знайдеться хоча б одна точка, в якій дотична до кривої паралельна хорді .

Оскільки , то можемо записати:

.

Рис.6.19 Рис.6.10

Отже, рівність (6.73) можна записати в такому вигляді:

,

або

.

Зокрема, покладемо , одержимо рівність

.

Вираз, який стоїть у лівій частині останньої рівності, є не що інше, як приріст функції в точці . Отже, дістаємо формулу

. (6.74)

Формула (6.74) виражає точне значення приросту функції

К-во Просмотров: 235
Бесплатно скачать Реферат: Теореми Ролля Лагранжа Коші Правило Лопіталя Формула Тейлора для функції однієї та двох змін