Реферат: Теоремы Ролля Коши Лагранжа Правило Лопиталя
и
.
Составим теперь вспомогательную функцию, вычтя из уравнения кривой уравнение хорды:
.
Полученная функция непрерывна на отрезке
и дифференцируема во всех его внутренних точках. Кроме того, вычисление
в точках
и
показывает, что
. Значит, функция
на отрезке
удовлетворяет требованиям теоремы Ролля. Но в этом случае существует такая точка
, в которой
.
Вычислим производную функции :
.
Согласно теореме Ролля в точке производная
, то есть
и
,
что и требовалось доказать.
Геометрический смысл теоремы Лагранжа следующий: внутри отрезка существует, по крайней мере, одна точка, в которой касательная параллельна хорде, стягивающей кривую на данном отрезке. В частности, при
теорема переходит в теорему Ролля.
Теорему Лагранжа часто записывают в следующем виде:
,
то есть приращение функции равно приращению аргумента, умноженному на производную функции в некоторой внутренней точке. В связи с этим теорему Лагранжа называют также теоремой о конечных приращениях.
3. Теорема Коши
Рассмотрим, наконец, третью теорему о среднем, принадлежащей Коши (1789–1859), которая является обобщением теоремы Лагранжа.
Теорема. Если функции и
непрерывны на отрезке
и дифференцируемы во всех его внутренних точках, причем
не обращается в ноль ни в одной из указанных точек, то существует, по крайней мере, одна точка
, в которой
.
Доказательство. Так как во всех точках
, то отсюда следует, что
. В противном случае, как следует из теоремы Ролля, существовала хотя бы одна точка
, в которой
.
Составим вспомогательную функцию
.
Данная функция непрерывна на отрезке и дифференцируема во всех его внутренних точках. Кроме того, вычисление ее в точках
и
дает:
. Значит, функция
удовлетворяет требованиям теоремы Ролля, то есть существует хотя бы одна точка
, в которой
.
Вычислим производную :
.
Из условия следует, что
и
,
что и требовалось доказать.
В случае, когда , теорема Коши переходит в формулировку теоремы Лагранжа.
4. Правило Лопиталя
На основании теоремы Коши о среднем можно получить удобный метод вычисления некоторых пределов, называемый правилом Лопиталя (1661–1704).
Теорема. Пусть функции и
непрерывны и дифференцируемы во всех точках полуинтервала
и при
совместно стремятся к нулю или бесконечности. Тогда, если отношение их производных имеет предел при
, то этот же предел имеет отношение и самих функций, то есть
.