Реферат: Теория относительности. Эволюция и структурная организация Вселенной
Вопрос №1 Теория относительности
Предпосылкой к созданию теории относительности явилось развитие в XIX веке электродинамики. Результатом обобщения и теоретического осмысления экспериментальных фактов и закономерностей в областях электричества и магнетизма стали уравнения Максвелла, описывающие все проявления электромагнитного поля и его взаимодействие с зарядами и токами.
Другим следствием развития электродинамики стал переход от ньютоновской концепции дальнодействия, согласно которой взаимодействующие на расстоянии тела воздействуют друг на друга через разделяющую их пустоту, причём взаимодействие осуществляется с бесконечной скоростью, т.е. "мгновенно", к концепции близкодействия, предложенной Майклом Фарадеем, в которой взаимодействие передаётся с помощью промежуточных агентов – полей, заполняющих пространство – и при этом встал вопрос о скоростях распространения как взаимодействий, переносимых полями, так и самих полей. Скорость распространения электромагнитного поля в пустоте вытекала из уравнений Максвелла и оказалась постоянной и равной скорости света.
Однако в связи с этим встал вопрос – относительно чего постоянна скорость света? В максвелловой электродинамике скорость распространения электромагнитных волн оказалась не зависящей от скоростей движения как источника этих волн, так и наблюдателя. Аналогичной оказалась и ситуация с магнитостатическими решениями, вытекающими из уравнений Максвелла: статические магнитные поля и силы Лоренца, действующие на движущиеся в магнитных полях заряды, зависят от скоростей зарядов по отношению к наблюдателю, т.е. уравнения Максвелла оказались неинвариантными относительно принципа относительности и преобразований Галилея – что противоречило ньютоновской концепции абсолютного пространства классической механики.
Специальная теория относительности (СТО) была разработана в конце IXX – начале XX века усилиями Г. А. Лоренца, А. Пуанкаре, Лармора и А. Эйнштейна, и затем представлена Минковским в четырёхмерном формализме, объединяющем пространство и время. Вопрос приоритета в создании СТО имеет дискуссионный характер: основные положения и полный математический аппарат теории, включая групповые свойства преобразований Лоренца, в абстрактной форме были впервые сформулированы А. Пуанкаре в работе 1905 г. "О динамике электрона" на основе предшествующих результатов Г. А. Лоренца, а явный абстрактный вывод базиса теории — преобразований Лоренца, из минимума исходных постулатов был дан А. Эйнштейном в практически одновременной работе 1905 г. "К электродинамике движущихся сред".
Два постулата Эйнштейна
В этой статье он сформулировал два знаменитых постулата, которые легли в основание частной, или специальной теории относительности (СТО), изменившей классические представления о пространстве и времени.
В первом постулате Эйнштейн развил классический принцип относительности Галилея. Он показал, что этот принцип является всеобщим, в том числе и для электродинамики (а не только для механических систем). Это положение не было однозначным, так как потребовалось отказаться от ньютоновского дальнодействия.
Обобщенный принцип относительности Эйнштейна утверждает, что никакими физическими опытами (механическими и электромагнитными) внутри данной системы отсчета нельзя установить, движется эта система равномерно или покоится. При этом пространство и время являются связанными друг с другом, зависящими друг от друга (у Галилея и Ньютона пространство и время независимы друг от друга).
Второй постулат специальной теории относительности Эйнштейн предложил после анализа электродинамики Максвелла – это принцип постоянства скорости света в вакууме, которая примерно равна 300 000км/с.
Скорость света – это самая большая скорость в нашей Вселенной. Больше скорости 300 000км/с в окружающем нас мире быть не может.
В современных ускорителях микрочастицы разгоняются до огромных скоростей. Например, электрон разгоняется до скорости vе = 0,9999999 С, где vе , С – скорости электрона и света соответственно. При этом, с точки зрения наблюдателя, масса электрона возрастает в 2500 раз:
Здесь me0 – масса покоя электрона, me – масса электрона на скорости ve .
Достичь скорости света электрон не может. Однако существуют микрочастицы, которые имеют скорость света, их называют "люксоны".
К ним относятся фотоны и нейтрино. У них практически нет массы покоя, их нельзя затормозить, они всегда движутся со скоростью света с. Все остальные микрочастицы (тардионы) движутся со скоростями меньше скорости света. Микрочастицы, у которых скорость движения могла бы быть больше скорости света, называют тахионами. Таких частиц в нашем реальном мире нет.
Исключительно важным результатом теории относительности является выявление связи между энергией и массой тела. При малых скоростях
где E = m0 c2 –энергия покоя частицы с массой покоя m0 ,а EK – кинетическая энергия движущейся частицы.
Огромным достижением теории относительности является установленный ею факт эквивалентности массы и энергии (E = m0 c2 ). Однако речь идет не о превращении массы в энергию и наоборот, а о том, что превращение энергии из одного вида в другой соответствует переходу массы из одной формы в другую. Энергию нельзя заменить массой, так как энергия характеризует способность тела выполнять работу, а масса – меру инерции.
При скоростях релятивистских, близких к скорости света:
где E –энергия, m – масса частицы, m – масса покоя частицы, с – скорость света в вакууме.
Из приведенной формулы видно, что для достижения скорости света частице нужно сообщить бесконечно большую энергию. Для фотонов и нейтрино эта формула несправедлива, так как у них v = c.
Релятивистские эффекты
Под релятивистскими эффектами в теории относительности понимают изменения пространственно-временных характеристик тел при скоростях, соизмеримых со скоростью света.
В качестве примера обычно рассматривается космический корабль типа фотонной ракеты, который летит в космосе со скоростью, соизмеримой со скоростью света. При этом неподвижный наблюдатель может заметить три релятивистских эффекта:
1.Увеличение массы по сравнению с массой покоя. С ростом скорости растет и масса. Если бы тело могло двигаться со скоростью света, то его масса возросла бы до бесконечности, что невозможно. Эйнштейн доказал, что масса тела есть мера содержащейся в ней энергии (E= mc2 ). Сообщить телу бесконечную энергию невозможно.
2.Сокращение линейных размеров тела в направлении его движения. Чем больше будет скорость космического корабля, пролетающего мимо неподвижного наблюдателя, и чем ближе она будет к скорости света, тем меньше будут размеры этого корабля для неподвижного наблюдателя. При достижении кораблем скорости света его наблюдаемая длина будет равна нулю, чего быть не может. На самом же корабле космонавты этих изменений не будут наблюдать. 3. Замедление времени. В космическом корабле, движущемся со скоростью, близкой к скорости света, время течет медленнее, чем у неподвижного наблюдателя.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--