Реферат: Теория структурообразования и оптимизация структуры ИСК
В различных видах вяжущего вещества устанавливаются после отвердения системы определенные соотношения объемов кристаллической и аморфной фаз, которые под действием эксплуатационных факторов могут претерпевать отклонения как за счет дополнительного выделения новообразований, так и за счет упорядочения в расположении частиц стекловатой фазы с постепенным переходом ее в кристаллическое, в той или иной мере деформированное состояние.
К процессам структурообразования и сопутствующим им явлениям относятся также контракция и усадка, экзотермический и эндотермический эффекты, релаксации и ретардации.
Контракция состоит в самопроизвольном сжатии системы с уменьшением ее первоначального объема в основном в связи с образованием новых химических соединений, с переходом некоторой доли объемной жидкой среды в химически связанное состояние. Поскольку продукт реакции является, как правило, новой фазой микро- и макроструктуры, то возникающая пористость оказывает существенное влияние на качество этой материальной системы.
Усадка – уменьшение в объеме, которое происходит под влиянием сжимающих капиллярных сил, перехода твердых компонентов в жидкое состояние с последующим заполнением пор и пустот жидкой средой, испарения части жидкой среды или ее синерсзиса, снижения температуры, в том числе вследствие эндотермического эффекта. Общая усадка состоит из физической и химической усадок.
В отдельных материальных системах вместо усадки наблюдается разуплотнение с увеличением объема конгломерата или вяжущей части. Это явление происходит вследствие набухания, полиморфного превращения, химического или физико-химического присоединения большого количества жидкой среды с увеличением в объеме аморфных или кристаллических новообразований, расширения объема при повышении температуры, в частности за счет экзотермических эффектов.
В результате усадки и набухания, тем более повторяющихся в технологический период изготовления конгломерата или в эксплуатационный период, нередко возникают самопроизвольные напряжения в материале и, как следствие, образование микротрещин с возможным ухудшением физико-механических свойств строительных изделий. Различными приемами: регулированием режима отвердения, введением дополнительных компонентов в смесь и другими – удается уменьшить или полностью исключить влияние усадочных напряжений или деформаций, связанных с разуплотнением структуры.
Тепловые эффекты обусловлены химическими реакциями и физическими модификациями. Эндотермические эффекты возникают при разрушениях кристаллической решетки или испарении жидкости, полиморфных превращениях вещества. Экзотермические эффекты и реакции обусловливаются образованием новых фаз, сопровождаются поглощением газовой среды, переходом неустойчивого аморфного состояния в кристаллическое.
Релаксация и ретардация – соответственно процессы самопроизвольного снижения напряжения при фиксированной деформации и изменения деформации при фиксированном внутреннем напряжении. И то и другое происходит под влиянием перемещений атомов, ионов, молекул, отдельных звеньев молекулярных цепей. В структурообразовании ИСК эти спонтанные процессы имеют как положительное, так и отрицательное значение. Во всех случаях эти процессы и характеризующие их параметры учитываются в расчетах ползучести и прочности элементов строительных конструкций.
Таким образом, комплекс сложных процессов и явлений, возникающих и развивающихся в период технологических переделов до определенного уровня, а затем постепенно угасающих, позволяет получать изделие из подготовленных и отдозированных компонентов. Подавляющее количество процессов и явлений из этого комплекса характерно для вяжущей части конгломерата, поскольку именно ее компоненты к моменту объединения наиболее активны. Структурообразование ИСК условно возможно расчленить на множество более простых процессов и явлений, подобно тому как сложные химические реакции представляют собой определенное параллельное или последовательное – сочетание простых реакций. Преобладающую роль в структурообразовании играют процессы, обеспечивающие формирование и отвердение вяжущей части, т.е. микроструктуры конгломерата. На стадии макроструктурообразования особая роль принадлежит процессам взаимодействия по границам раздела структурных элементов с отвердением всей системы ИСК и с оформлением готового изделия. Структура такого изделия отныне становится единой, монолитной. В расчетных схемах ее нередко условно представляют как состоящую из микро- и макроструктурных частей.
Чтобы технологические переделы были эффективными, а качество продукции более высоким, обосновывают их оптимальные режимы и параметры на всех основных стадиях производства. Обычно их устанавливают опытным путем, хотя этот метод становится недостаточным при возрастании габаритов выпускаемой продукции. Поэтому вводят определенные расчетные модели, в которых имитируют состояние и поведение реальных конгломератных смесей. Основной реологической характеристикой в этих расчетах и исследованиях служит вязкость предельно разрушенной или полностью ненарушенной структуры, а также частично разрушенных структур. Вторая реологическая характеристика – предельное напряжение сдвига – позволяет описывать уравнением напряженное состояние смеси при оптимизации технологических режимов и параметров.
Спонтанно протекающим в технологическом процессе переделом является отвердение конгломератной системы, в первую очередь ее вяжущей части. Но отвердение, являясь комплексом сложных процессов, остается мало доступным для визуальных наблюдений. Поэтому разработана гипотетическая общая теория отвердения ИСК.
Отвердевание – сложный процесс перехода матричного вещества ИСК из жидкого или жидкообразного состояния в твердое. У безобжиговых конгломератов вяжущая часть обнаруживает первые признаки отвердевания еще на стадии ее перемешивания, когда возникают ассоциации молекул или химических соединений, которые сопутствуют структурообразованию на последующих этапах технологии. Лавинный характер нарастания симптомов начавшегося и развивающегося отвердевания характерен для этапа специальной обработки. У обжиговых конгломератов процесс отвердевания занимает, как правило, укороченный период времени по сравнению с безобжиговыми и проходит в основном при охлаждении изделий, отлитых или отформованных полностью или частично из расплава, а также спекаемых при обжиге. Но и здесь образование отдельных структурных элементов и химических соединений происходит еще на стадии расплавов с переходом их в отвердевший сплав.
Каждая разновидность неорганических и органических вяжущих веществ отвердевает под влиянием специфических факторов. Все вяжущие вещества отвердевают под влиянием ряда общих факторов, что придает процессу отвердевания закономерный характер, позволяет направленно управлять им и структурообразованием в целом. Сформировавшееся твердое тело характеризуется стабильностью структуры и фиксированным положением в нем частиц на достаточно малых друг от друга расстояниях.
В сложном процессе отвердевания вяжущих веществ, составляющих матричную часть структуры конгломератов, можно условно выделить две стадии, характеризуемые прямо противоположными изменениями в отвердевающей системе: диспергирование – на первой стадии, конденсацию и консолидацию – на второй. Теоретически вторая стадия во времени следует за первой, но практически нельзя провести четкой границы между ними, так как многие явления, характерные для второй стадии, нередко сопутствуют первой, и наоборот. Обе стадии в какой-то мере накладываются одна на другую, хотя и имеют ярко выраженные отличительные особенности.
Первая стадия процесса отвердевания отличается массовым переходом твердого или твердообразного вещества, входящего в компоненты матричной части ИСК, в состояние высокой дисперсности до размеров молекул, атомов, ионов или более крупных макромолекул, ассоциатов атомов, агрегатов и т.п. Такое диспергирование благоприятствует переводу частиц в системе в наименее устойчивое, метастабильное и в то же время в наиболее энергетически активное состояние. Эти условия способствуют свободному перемещению частиц с неизбежным тепловым движением их в окружающей среде, образованию при столкновениях под действием энергии активации ранее отсутствовавших соединений, ассоциаций и агрегатов, новых фаз и других микроструктурных элементов. Новообразования возникают нередко столь быстро, что они появляются и накапливаются в системе на первой стадии массового диспергирования.
Переход веществ в состояние высокой дисперсности в технологический период производства ИСК происходит под влиянием различных факторов: химических, механических, тепловых, физико-химических, электрических и др. Наиболее характерными для вяжущих веществ оказываются: растворение в жидкой среде, расплавление при высокой температуре, механическое измельчение. При всех методах перевод вещества в новое агрегатное состояние обычно сопровождается расходом энергии от внешнего источника и частичным ее поглощением возникающей новой дисперсной системой. Эта система становится более энергетически активной с возрастанием неуравновешенности ее состояния. Подобные высокодиспе?