Реферат: Терминология теории систем. Классификация систем. Закономерности систем

Системы классифицируются следующим образом:

по виду отображаемого объекта - технические, биоло­гические и др.;

по виду научного направления - математические, физи­ческие, химические и т. п.;

по виду формализованного аппарата представления системы — детерминированные и стохастические;

по типу целеустремленности - открытые и закрытые;

по сложности структуры и поведения - простые и сложные;

по степени организованности - хорошо организован­ные, плохо организованные (диффузные), самоорганизующиеся системы.

Рассмотрим подробно два последних вида классификации систем.

Хорошо организованные системы. Представить анализируемый объект или процесс в виде «хорошо организованной системы» означает определить элементы системы, их взаимосвязь, правила объединения в более крупные компоненты, т. е. определить связи между всеми компонентами и целями системы, с точки зрения которых рассматривается объект или ради достижения которых создается система. Проблемная ситуация может быть описана в виде математического выражения, связывающего цель со сред­ствами, т. е. в виде критерия эффективности, критерия функци­онирования системы, который может быть представлен сложным уравнением или системой уравнений. Решение задачи при пред­ставлении ее в виде хорошо организованной системы осуществ­ляется аналитическими методами формализованного представле­ния системы.

Примеры хорошо организованных систем: солнечная система, описывающая наиболее существенные закономерности движения планет вокруг Солнца; отображение атома в виде планетарной системы, состоящей из ядра и электронов; описание работы сложного электронного устройства с помощью системы уравне­ний, учитывающей особенности условий его работы (наличие шумов, нестабильности источников питания и т. п.).

Для отображения объекта в виде хорошо организованной системы необходимо выделять существенные и не учитывать относительно несущественные для данной цели рассмотрения компоненты: например, при рассмотрении солнечной системы не учитывать метеориты, астероиды и другие мелкие по сравнению с ранетами элементы межпланетного пространства.

Описание объекта в виде хорошо организованной системы применяется в тех случаях, когда можно предложить детермини­рованное описание и экспериментально доказать правомерность его применения, адекватность модели реальному процессу. По­пытки применить класс хорошо организованных систем для представления сложных многокомпонентных объектов или мно­гокритериальных задач плохо удаются: они требуют недопусти­мо больших затрат времени, практически нереализуемы и неадек­ватны применяемым моделям.

Плохо организованные системы . При представлении объекта в виде «плохо организованной или диффузной системы» не ста­вится задача определить все учитываемые компоненты, их свой­ства и связи между ними и целями системы. Система харак­теризуется некоторым набором макропараметров и закономер­ностями, которые находятся на основе исследования не всего объекта или класса явлений, а на основе определенной с помощью некоторых правил выборки компонентов, характеризующих исследуемый объект или процесс. На основе такого выборочного исследования получают характеристики или закономерности (статистические, экономические) и распространяют их на всю систему в целом. При этом делаются соответствующие оговорки. Например, при получении статистических закономерностей их распространяют на поведение всей системы с некоторой довери­тельной вероятностью.

Подход к отображению объектов в виде диффузных систем широко применяется при: описании систем массового обслужива­ния, определении численности штатов на предприятиях и учреж­дениях, исследовании документальных потоков информации в си­стемах управления и т. д.

Самоорганизующиеся системы. Отображение объекта в виде самоорганизующейся системы - это подход, позволяющий ис­следовать наименее изученные объекты и процессы. Самооргани­зующиеся системы обладают признаками диффузных систем: стохастичностью поведения, нестационарностью отдельных па­раметров и процессов. К этому добавляются такие признаки, как непредсказуемость поведения; способность адаптироваться к из­меняющимся условиям среды, изменять структуру при взаимо­действии системы со средой, сохраняя при этом свойства целост­ности; способность формировать возможные варианты поведе­ния и выбирать из них наилучший и др. Иногда этот класс разбивают на подклассы, выделяя адаптивные или самоприс­посабливающиеся системы, самовосстанавливающиеся, самовос­производящиеся и другие подклассы, соответствующие различ­ным свойствам развивающихся систем.

Примеры: биологические организации, коллективное поведение людей, организация управления на уровне предприятия, отрасли, государства в целом, т. е. в тех системах, где обязательно имеется человеческий фактор.

При применении отображения объекта в виде самоорганизу­ющейся системы задачи определения целей и выбора средств, как правило, разделяются. При этом задача выбора целей может быть, в свою очередь, описана в виде самоорганизующейся систе­мы, т. е. структура функциональной части АСУ, структура целей, плана может разбиваться так же, как и структура обеспечива­ющей части АСУ (комплекс технических средств АСУ) или ор­ганизационная структура системы управления.

Большинство примеров применения системного анализа ос­новано на представлении объектов в виде самоорганизующихся систем.

Определение большое системы. Существует ряд подходов к разделению систем по сложности. В частности, Г. Н. Поваров в зависимости от числа элементов, входящих в систему, выделяет четыре класса систем: малые системы (10…103 элементов), слож­ные (103 …1O7 элементов), ультрасложные (107 ...1030 элементов), суперсистемы (1030 ...10200 элементов). Так как понятие элемента возникает относительно задачи и цели исследования системы, то и данное определение сложности является относительным, а не абсолютным.

Английский кибернетик С. Бир классифицирует все кибер­нетические системы на простые и сложные в зависимости от способа описания: детерминированного или теоретико-вероят­ностного. А. И. Берг определяет сложную систему как систему, которую можно описать не менее чем на двух различных мате­матических языках (например, с помощью теории дифференци­альных уравнений и алгебры Буля).

Очень часто сложными системами называют системы, кото­рые нельзя корректно описать математически, либо потому, что в системе имеется очень большое число элементов, неизвестным образом связанных друг с другом, либо неизвестна природа явлений, протекающих в системе. Все это свидетельствует об отсутствии единого определения сложности системы.

При разработке сложных систем возникают проблемы, от­носящиеся не только к свойствам их составляющих элементов и подсистем, но также к закономерностям функционирования системы в целом. При этом появляется широкий круг специфи­ческих задач, таких, как определение общей структуры системы; организация взаимодействия между элементами и подсистемами; учет влияния внешней среды; выбор оптимальных режимов функ­ционирования системы; оптимальное управление системой и др.

Чем сложнее система, тем большее внимание уделяется этим вопросам. Математической базой исследования сложных систем является теория систем. В теории систем большой системой (сложной, системой большого масштаба. Large Scale Systems) называют систему, если она состоит из большого числа взаимо­связанных и взаимодействующих между собой элементов и спосо­бна выполнять сложную функцию.

Четкой границы, отделяющей простые системы от больших, нет. Деление это условное и возникло из-за появления систем, имеющих в своем составе совокупность подсистем с наличием функциональной избыточности. Простая система может нахо­диться только в двух состояниях: состоянии работоспособности (исправном) и состоянии отказа (неисправном). При отказе эле­мента простая система либо полностью прекращает выполнение своей функции, либо продолжает ее выполнение в полном объ­еме, если отказавший элемент резервирован. Большая система при отказе отдельных элементов и даже целых подсистем не всегда теряет работоспособность, зачастую только снижаются характеристики ее эффективности. Это свойство больших систем обусловлено их функциональной избыточностью и, в свою оче­редь, затрудняет формулировку понятия «отказ» системы.

Под большой системой понимается совокупность материаль­ных ресурсов, средств сбора, передачи и обработки информации, людей-операторов, занятых на обслуживании этих средств, и лю­дей-руководителей, облеченных надлежащими правами и ответ­ственностью для принятия решений. Материальные ресурсы — это сырье, материалы, полуфабрикаты, денежные средства, раз­личные виды энергии, станки, оборудование, люди, занятые на выпуске продукции, и т. д. Все указанные элементы ресурсов объединены с помощью некоторой системы связей, которые по заданным правилам определяют процесс взаимодействия между элементами для достижения общей цели или группы целей.

Примеры больших систем: информационная система; пасса­жирский транспорт крупного города; производственный процесс;

система управления полетом крупного аэродрома; энергетичес­кая система и др.

Характерные особенности больших систем. К ним относятся:

большое число элементов в системе (сложность системы);

К-во Просмотров: 284
Бесплатно скачать Реферат: Терминология теории систем. Классификация систем. Закономерности систем