Реферат: Термины и единицы измерения при описании электрического тока
Что произойдет, если, как показано на рис. 4, мы добавим второе сопротивление, также 10 ом, включенное параллельно, а не последовательно? В пепи два резистора R1 и R2 обеспечивают отдельные пути для тока. Оба находятся под напряжением 10 В, так что соответствующие значения тока будут:
Следовательно, для удовлетворения первого закона Кирхгофа в точку а должно поступать 2 А и 2 А должны выходить из точки Ь. Амперметр в таком случае будет показывать 2 А. Комбинированное сопротивление R1 и R3 равно
R[ota] = V/I = (10 В)/(2 А) = 5 Ом,
или половине отдельных сопротивлений. Это имеет смысл, если подумать об аналогии в гидравлике: две трубы в параллели предоставят меньшее сопротивление потоку, чем одна из этих труб в одиночку. В электрической цепи в параллели проводимости суммируются:
g[ota] = g1 + g3 , или I /R[ota] = 1 /R1 + 1 /R3 .
Если теперь мы обобщим для любого количества (n) резисторов, сопротивления в случае последовательного соединения просто суммируются:
Рис. 5. Аналоговая схема мембраны нервной клетки. На А и В сопротивления R1 и R2 поменяны местами, в остальном цепи одинаковы. Источники V1 и V2 включены последовательно. На (А) точка b (потенциал «внешней» стороны мембраны) положительно заряжен относительно точки d («внутренняя» сторона) на 85 mV; на (В) — на 35 mV. Эти цепи иллюстрируют как изменения сопротивления изменяют потенциал при неизменном источнике тока (который представляет равновесные потенциалы ионов). |
А при параллельном соединении сопротивлений складываются обратные величины:
Применение анализа цепи к модели мембраны
На рис. 5А показана цепь, сходная с цепями, которые используются для представления нервных мембран. Следует заметить, что две батареи поставляют ток в цепь в одинаковом направлении, и что сопротивления R1 и R2 соединены последовательно. Какова разность потенциалов между точками b и d (которые представляют внутреннюю и внешнюю среду мембраны)? Полная разность потенциалов на двух резисторах между а и с равна 150 мВ, при этом точка а положительна по отношению к с. Следовательно, ток протекающий из а в с через резистор равен 150 мВ/100000 Ом = 1,5 мкА. Когда 1,5 мкА проходит через 10000 Ом. как между а и Ь, происходит падение потенциала в 15 мВ, если точка а положительна по отношению к Ь. Разница потенциалов между внутренней и внешней средой равна, следовательно, 100 мВ - 15 мВ = 85 мВ. Можно получить тот же результат, вычислив падение потенциала после прохождения R2 (1,5 мкА x 90000 Ом = 135 мВ) и прибавив его к V2 ( 135 мВ - 50 мВ = 85 мВ). Это должно быть так, потому что потенциал между b и d должен иметь единое значение.
На рис. 5В R1 , и R2 поменялись местами. Так как общее сопротивление в цепи остается прежним, ток тоже должен быть таким же, как на рис. 5А, то есть 1,5мкА. Теперь падение потенциала после прохождения Л2 , между а и Ь, равно 90 000 Ом x 1,5 мкА = 135 мВ, точка а положительна по отношению к Ь. Теперь потенциал мембраны 100 мВ - 135 мВ = -35 мВ — отрицательный; тот же результат можно, конечно, получить используя ток, проходящий через R1 . Эта простая цепь иллюстрирует важный пункт физиологии мембран: потенциал мембраны может меняться в результате изменения сопротивлений, при том что батареи остаются неизмененными. Общее описание мембранного потенциала в цепи, изображенной на рис. 5А, можно получить таким способом:
Преобразовав получим:
Электрическая емкость и постоянная времени
В цепях, изображенных на рис. 3 и 4, замыкание или размыкание ключа производит мгновенные и одновременные перемены тока и потенциала. Конденсаторы вводят в рассмотрение движения тока элемент времени. Они аккумулируют и хранят электрический заряд, и когда они присутствуют в цепи, перемены тока и напряжения не будут одновременными.
Рис. 6. Емкости в электрической цепи. А, В и С представляют собой идеальные цели без сопротивления. Когда ключ S1 замкнут (А), емкость заряжается мгновенно до напряжения V0 . Если затем S1 разомкнуть (В), потенциал останется на емкости. Замыкание ключа S2 (С) мгновенно разряжает емкость. На (О) емкость разряжается через сопротивление R. Максимальный ток разряда I = V0 /R. . |
Конденсатор состоит из двух проводящих электричество пластин (обычно металлических), разделенных изолятором (воздухом, слюдой, маслом или пластиком). Когда на пластины прикладывается напряжение (рис. 6А), заряд моментально перемещается с одной пластины на другую по наружной цепи. Однако, когда конденсатор полностью заряжен, ток прекращается, так как он не может проходить через изолятор. Емкость (С) конденсатора определяется количеством заряда (q) который он может сохранять на каждый вольт, приложенный к нему:
Единица измерения емкости — кулон/вольт, или фарад (Ф). Чем больше размер пластинок и чем они ближе друг к другу, тем больше емкость. Конденсатор емкостью 1 фарад очень большой; часто используемые емкости — порядка микрофарад (мкФ) и меньше.
Когда ключ на рис. 6А замыкается, происходит моментальное разделение зарядов на пластинах. Количество заряда, хранящегося в конденсаторе, пропорционально его емкости и величине приложенного к нему напряжения (V0 ,). Когда ключ размыкается, как на рис. 6В, заряд конденсатора остается, так же как и напряжение (V) между пластинками. (Можно иногда получить неожиданную электротравму от электронной аппаратуры, когда она уже была выключена, потому что некоторые конденсаторы в цепи могут остаться заряженными). Конденсатор можно разрядить замыканием второго переключателя, как показано на рис. 6С. Движение тока опять же будет мгновенным, возвращая заряд и напряжение конденсатора к нулю. Если же разряжать конденсатор через сопротивление (R, рис.6D), разрядка будет постепенной. Это происходит потому, что сопротивление ограничивает величину тока. Если напряжение в конденсаторе — V, тогда по закону Ома максимальный ток равен I = V/R. В цепи без сопротивления величина тока увеличивается, становится бесконечно большой и конденсатор разряжается за бесконечно малый промежуток времени; если сопротивление очень большое, конденсатор разряжается очень долго. Скорость разрядки в данный момент времени, dq/dt, соответствует току, протекающему в этот момент. Иначе говоря, dq/dt = -V/R (с отрицательным знаком, потому что заряд уменьшается со временем), где V, первоначально равное напряжению батареи, уменьшается по мере разряжения конденсатора. Так как g = CV, dq/dt = CdV/dt,можно написать CdV/dt = —V/R, или
Рис. 7. Зарядка емкости. На (А) емкость заряжается со скоростью, определяемой сопротивлением. На (В) скорость зарядки зависит от двух сопротивлений цепи. На (Е) емкостной ток и напряжение на обкладках емкости показаны как функция времени. Напряжение достигает максимума при полном заряде емкости, то есть когда ток больше не течет через емкость. На (С) и (D) показаны гидравлические аналоги цепей (А) и (В). |
Это уравнение показывает, что темп потери напряжения в конденсаторе пропорционален остающемуся напряжению. Таким образом, при уменьшении напряжения уменьшается скорость разрядки. Постоянная пропорциональности \/RC является константой скорости (темпа) для процесса, RC — это его постоянная времени. Подобный процесс постоянно возникает в природе. Например, скорость, с которой вода вытекает из ванной уменьшается при уменьшении глубины и, следовательно, давления на водосток. В этом случае процесс разрядки описывается экспоненциальной функцией