Реферат: Тести Чоу
Розглядаючи лише співвідношення (1), ми можемо перевірити, чи виправдана ця гнучкість, з'ясувавши, чи вносять вказані фіктивні змінні, як група, значущий внесок в пояснюючу здатність рівняння. Сума квадратів залишків, якщо фіктивні змінні не включені в рівняння, складає 158,6 ∙ 106 , а коли вони включені в рівняння, ця сума рівна 154,7 ∙ 106 . Отже, F-статистика для перевірки пояснюючої здатності фіктивних змінних як групи має вигляд:
тобто вона в точності така ж, як в тесті Чоу.
Можна показати, що це загальний результат. Вибір між використанням розглянутої процедури тесту Чоу або оцінюванням складної регресії з фіктивними змінними на основі співвідношення (1) залежатиме від цілей, які ставить перед собою дослідник. Тест Чоу виконується швидше, і він достатній, якщо потрібно тільки встановити, що залежності в підвибірках в деякій мірі розрізняються. Оцінювання регресії з фіктивними змінними більш інформативно в тому відношенні, що воно дозволяє виконувати F-тесты з розглядом внеску кожної фіктивної змінної, а також всієї групи в цілому і може привести до компромісу, в якому дослідник припускає, що деякі коефіцієнти однакові в обох підвибірках, і використовує фіктивні змінні для диференціації значень решти коефіцієнтів.
Тести на стійкість
Тести на стійкість для регресійної моделі призначені для оцінки того, наскільки поведінка моделі в послявибірковому періоді порівнянна з її поведінкою в період вибірки, на якій вона була одержана. У основі організації тестів на стійкість можуть лежати два принципи. Один підхід – зосередитися на передбачаючій здатності моделі; інший підхід – оцінити, чи відбувається зрушення параметрів в період прогнозу.
Тест Чоу на невдачу прогнозу
Як ми бачили в попередньому розділі, помилку прогнозу можна розрахувати, додавши набір фіктивних змінних для спостережень періоду прогнозу. Тепер цілком природно визначити, чи істотно помилка прогнозу відрізняється від нуля, і ми можемо зробити це за допомогою F-тесту на сумісну пояснюючу здатність фіктивних змінних. Сумістивши період вибірки і період прогнозу, ми оцінимо рівняння регресії спочатку без набору фіктивних змінних, а потім – разом з цим набором. Позначимо одержані суми квадратів відхилень як RSST+m і RSSD T+m , де нижній індекс показує число спостережень в регресії, а верхній індекс «D» означає включення в рівняння фіктивних змінних. За допомогою F-тесту, описаного в розділі, ми можемо визначити, чи було істотним поліпшення якості рівняння після додавання набору фіктивних змінних. Його можна представити у вигляді (RSST+m – RSSD T+m ); число фіктивних змінних рівне m; сума квадратов відхилень після включення фіктивних змінних складає RSSD T+m ; число мір свободи, що залишається, рівне числу спостережень в суміщеній вибірці (T + m) за вирахуванням числа оцінених параметрів (k + m + 1). У результаті значення F-статистики складе:
Насправді для реалізації тесту навіть не потрібно оцінювати рівняння регресії з фіктивними змінними, оскільки значення RSSD T+m рівно значенню RSST – сумі квадратів відхилень для рівняння регресії, оціненого на періоді вибірки. Якість цієї регресії в точності таке ж, як і у регресії для перших T спостережень в рівнянні з фіктивними змінними, і відхилення тут ті ж самі. Для останніх m спостережень в рівнянні з фіктивними змінними немає відхилень, оскільки включення спеціальної фіктивної змінної для кожного спостереження гарантує точність рівняння для цих спостережень. У результаті значення RSSD T+m у точності таке ж, як і значення RSST , і F-статистика може бути переписана як
Цей тест відомий як тест Чоу і був названий так на ім'я свого творця Г. Чоу (Chow, 1960), інтерпретація тесту, що проте приводиться тут, була запропонована дещо пізніше X. Песараном, Р. Смітом і С. Ео.
Приклад
Функція попиту на продукти харчування спочатку була оцінена на даних за період 1959-1979 рр., і RSST = 0,0052, а потім – на даних за період 1959-1983 рр., RSST+m = 0,0070. Як наслідок значення F-статистики рівне:
Критичне значення F-статистики з 4 і 18 мірами свободи при 5-процентному рівні значущості рівне 2,93, тому ми не відкидаємо нульову гіпотезу про стабільність коефіцієнтів рівняння регресії.
F-тест на стабільність коефіцієнтів
Якщо є прийнятні спостереження за період прогнозу, то можна провести F-тест на наявність структурного перелому, описаний в розділі, і оцінити, чи значущо розрізняються коефіцієнти періоду вибірки і періоду прогнозу. Для реалізації цього тесту спочатку необхідно оцінити роздільно рівняння регресії для періоду вибірки і періоду прогнозу, а потім – спільно для цих двох періодів. Після цього потрібно перевірити, чи значущо поліпшується якість рівняння при розділенні загального періоду оцінки регресії на період вибірки і період прогнозу. Підтвердження цієї гіпотези може служити свідчення того, що коефіцієнти регресії нестабільні.
Приклад
При оцінюванні функції попиту на продукти харчування з використанням спостережень за 1959-1979 рр. як період вибірки, а за 1980-1983 рр. – як період прогнозу, суми квадратів відхилень для періоду вибірки, періоду прогнозу і суміщеного періоду дорівнювали 0,0052; 0,0002 і 0,0070 відповідно. Оцінка окремих рівнянь регресії для двох періодів призводить до втрати трьох мір свободи, і число мір свободи, що залишається після оцінювання шести параметрів (двох постійних членів, двох коефіцієнтів при logx, двох коефіцієнтів при logp), рівне 19. У результаті ми одержуємо наступну F-статистику, розподілену з 3 і 19 мірами свободи:
Критичне значення t-статистики з таким числом мір свободи при 5-процентному рівні значущості рівне 3,13, що дозволяє нам зробити висновок про відсутність явної нестабільності коефіцієнтів.
Висновок
Побудова регресійних моделей на сьогодні, поза сумнівом, є найбільш широко вживаним методом багатовимірного статистичного аналізу соціологічних даних. За останні декілька років більше половини статей, що аналізують емпіричні дані, засновані на використанні регресійних моделей.
Достатньо поширені регресійні методи і серед російських соціологів, фахівців, що використовують дослідні методики. Разом з тим багато особливостей і обмеження регресійних моделей звичайно залишаються поза сферою уваги дослідників, що, часом, призводить до неточних, або просто помилкових результатів.
Традиційна модель множинного лінійного регресійного аналізу має на увазі пошук показників (що позначаються X), що визначають значення окремої кількісної змінної, що позначається Y. Структура зв'язку в даній моделі передбачається лінійною. Іншими словами, шукається наступна форма залежності:
Y = B0 + B1 X1 + B2 X2 + ... +Bn Xn + U,
де U – так званий залишковий член, що фіксує ту частину інформації Y, яка не пояснюється іксами.
Регресійний аналіз показує, по-перше, якість моделі, тобто ступінь того, наскільки дана сукупність іксів пояснює Y. Показник якості називається коефіцієнтом детерміації R2 і показує, який відсоток інформації Y можна пояснити поведінкою іксів. По-друге, регресійний аналіз обчислює значення коефіцієнтів В, тобто визначає, з якою силою кожний з Х впливає на Y.
Методологічним недоліком такого підходу є те, що дана залежність шукається єдиною для всієї сукупності опитаних респондентів. Іншими словами, ми припускаємо, що для всіх людей характер залежності Y від іксів єдиний. У тому випадку, коли вибіркова сукупність достатньо однорідна, такого роду допущення має під собою певні підстави. Проте, якщо аналізуються, скажімо, детермінанти електоральних переваг на основі даних всеросійської вибірки, допущення про однорідність цих детермінантів для чукотського оленяря і для московського професора виглядає не дуже переконливим.
Єдина форма рівняння в цій ситуації сильно огрублює реальну залежність, якість моделі неминуче виявляється вельми низькою, а сенс регресійних коефіцієнтів, що фіксують ступінь впливу іксів на Y, можна прирівняти до горезвісного показника "середньої температури по лікарні".
Цілком очевидно, що набагато розумніше будувати окремі моделі для груп респондентів, що істотно розрізняються між собою. Проте доведення такого підходу до логічного завершення чревате небезпекою повного релятивізму. Дійсно, завжди можна знайти більш-менш переконливі аргументи на користь того, що з аналізованої проблеми механізми формування оцінок різні у жінок і чоловіків, у городян і сільських жителів, у інженерів і робочих і т.д. і т.п. Отже, для кожної групи необхідно будувати свою модель, що не дуже конструктивно, оскільки кількість таких моделей обмежується лише фантазією соціолога по розбиттю всієї сукупності на окремі групи.
Виявляється, проте, що є певні формальні критерії, що дозволяють визначати межі груп, для яких діють однакові, або різні механізми.
Отже, ми розглянули статистичний тест, що дозволяє оцінити значущість поліпшення регресійної моделі після розділення початкової вибірки на частини. Одним з обмежень лінійної регресії є те, що для різних інтервалів значень незалежної змінної характер її зв'язку з вихідною змінною може мінятися. Наприклад, із збільшенням віком клієнта його кредитний рейтинг може збільшуватися. Але дана закономірність не справедлива для всіх віків. Після певного віку (50–55 років), люди частіше хворіють, їм складніше знайти роботу і т.д., тому після, скажімо, 50 років спостерігається зворотна залежність.
Очевидно, що будь-яка модель, яка апроксимує таку закономірність єдиною лінійною залежністю, навряд чи буде точною. Виходом з ситуації є розділення діапазону значень вхідної змінної на два, в межах кожного з яких залежність між нею і вихідній змінній монотонна і побудова рівняння регресії для кожного одержаного піддіапазону. Виникає питання: як розбити початкову множину так, щоб одержане розбиття забезпечило кращу апроксимацію? Для цього звичайно будують безліч розбиття, для кожного визначають значущість поліпшення моделі і вибирають те, яке забезпечило велику значущість. Для оцінки такої значущості і використовується тест Чоу.