Реферат: The Physics Of A Yo Essay Research
climbing up the string continues beyond the momentary application of the tug.
As the yo-yo continues to climb back up the string, the angular momentum
(rotational kinetic energy) of the yo-yo is converted back into gravitational
potential corresponding to the increasing height of the center of mass of the
yo-yo. For this reason, the yo-yo’s rotational kinetic energy and, hence, its
rotation rate, steadily decreases as the yo-yo rises. This is, of course, the
reverse of the process when the yo-yo was dropped.
If not for frictional losses, the yo-yo would climb all the way back up the
string to your hand just as its rotational rate decreases to zero. But, due to
friction, the yo-yo does not quite make it all the way back up to your hand
before it stops rotating.
Thereafter, the process repeats, with the yo-yo returning short of its
previous height on each cycle. Eventually, the yo-yo comes to rest at the
bottom.
Of course, as everyone knows, it is possible to keep the yo-yo going
indefinitely by giving it a slight upward pull on each cycle. This pull can be
combined with the tug required to initiate the climb back up the string. The
pull serves to give the center of mass of the yo-yo a little extra kinetic
energy to compensate for frictional losses, so that the
Wallin, 3
yo-yo can be kept going indefinitely.
Yo-yos can also be thrown horizontally, or launched in other directions. The
principle of operation is then just the same except that the kinetic energy of
the center of mass, which is converted into spin as the string unwinds, results
from being thrown, rather than from falling through a gravitational potential.