Реферат: Тиристоры и некоторые другие ключевые приборы

(токи I`э0 заменены на Iэ0 , так как принято a1 = 0).

Учитывая, что Iп1 = Iп2 = Iп3 = I и полагая токи Iэ0 одинаковыми у всех переходов, получаем простое приближенное выражение:

U=jT ln([I/Iэ0 ]/[a-1]) (9 б)

Вблизи точки Н, где a @1, увеличение тока, а вместе с ним коэф­фициента а приводит к сильному увеличению разности a - 1 и напря­жение несколько уменьшается (участок 4). В точке ОП напряжение достигает минимума и в дальнейшем растет с ростом тока (участок 5) за счет падения напряжения в толстой базе ( Наличие толстой базы в структуре динистора характерно для большинства реальных приборов по конструктивно-технологическим причинам. Коэффициент переноса c в такой базе существенно меньше единицы, поскольку обычно w >> L. Это обстоятельство не препятствует работе динистора, если выполняется условие a1 + a3 > 1. Более того, малый коэффициент переноса в толстой базе желателен, потому что при этом суммарный коэффициент a в области малых токов нарастает медленнее, а это обеспечивает большие напряжения переключения. ) .

Обычно параметры точек Н и ОП близки друг к другу, поэтому можно вычислять координаты точки ОП по формулам (8) и (9).

При отрицательном напряжении U переход П2 оказывается сме­щенным в прямом направлении и дырки инжектируются в слой n1 , а электроны — в слой p2 . Переходы П1 и П3 смещены в обратном направлении и являются в данном случае коллекторными. Таким образом, динистор в этом режиме эквивалентен двум последовательно включенным транзисторам (р-п-р и п-р-п) с оборванными базами. Напряжение пробоя в такой комбинации зависит от типа переходов П1 и П3 (плавные или ступенчатые), а также от материала баз.

Важной проблемой при разработке динисторов и других аналогич­ных приборов является обеспечение плавного изменения коэф­фициента а в области малых токов. Действительно, как уже отмечалось, 2-й (переходный) участок вольт-амперной кривой (рис. 4) характерен заметной и растущей ролью слагаемого aI по срав­нению с током Ik 0 в формуле (3). Значит, чем медленнее увеличи­вается a c ростом тока, тем позднее (при больших токах) начнется 2-й участок и тем больше будет напряжение переключения, что обычно желательно в таких приборах. С этой точки зрения предпочтительным материалом для динисторов является кремний, так как у кремниевых переходов благодаря большей роли процессов генерации - рекомби­нации коэффициент инжекции при малых токах близок к нулю и с ростом тока увеличивается весьма медленно. Еще одним преимуществом кремния является малая величина тока в запер­том состоянии прибора. Однако, с другой стороны, кремниевые переходы характерны большей величи­ной прямого напряжения и большим сопротивлением слоев. Это ухудшает параметры динистора в открытом состоянии.

Рис. 5. Структура тринистора.

Чтобы ослабить зависимость a (I) при малых то­ках (особенно у германиевых структур), часто шун­тируют эмиттерный переход небольшим сопротив­лением R. Тогда значительная часть общего тока ответвляется в это сопротивление, минуя эмиттер. Тем самым эмиттерный ток, а вместе с ним и коэффициент а при прочих равных условиях умень­шаются.

В последнее время одну из баз динисторов обычно легируют золо­том. Цель такого легирования - уменьшить время жизни и тем самым время переключения. При этом одновременно возрастает отношение w/L (поскольку L =(d t) 1/2 ), а значит, и коэффициент a, что опять-таки способствует повышению напряжения переключения.

Тринистор. Снабдим одну из баз динистора, например п 1 , внеш­ним выводом и используем этот третий электрод для задания дополни­тельного тока через переход p1 -n1 (рис. 5) еальные четырехслойные структуры характерны различной толщиной баз. В качестве управляющей используется тон­кая база, у которой коэффициент передачи a1 близок к единице. ) . Тогда получится прибор, обладающий свойствами тиратрона. Для такого прибора (тринистора) принята та же терминология, что и для обычного тран­зистора: выходной ток называется коллекторным, а управляющий — базовым. Эмиттером считается слой, примыкающий к базе, хотя с физической точки зрения эмиттером является и второй внешний слой (в нашем случае п 2 ). Условное обозначение тринистора вместе с семей­ством характеристик показано на рис. 6. Как видим, увеличение управляющего тока Iб приводит прежде всего к уменьшению напряже­ния прямого переключения. Кроме того, несколько возрастает ток прямого переключения, а ток обратного переключения уменьшается.В результате отдельные кривые с ростом тока Iб как бы «вписываются» друг в друга вплоть до полного исчезновения отрицательного участка (такую кривую называют спрямленной характеристикой).

Элементарный анализ тринистора можко провести, исходя из формулы (1), в которой нужно положить Iп3 = Iп2 = Ik и Iп1 = Ik + Iб . Тогда вместо формулы (2) получим для тока Ik более общее выражение

Ik = (MIk0 +(Ma1 )Iб )/(1-Ma) (10)

Здесь по-прежнему a = a1 + a3 — суммарный коэффициент пере­дачи, в котором составляющая a3 является функцией тока Ik , а состав­ляющая a1 - функцией суммы токов Ik + Iб . Задавая положительный ток Iб , мы тем самым задаем начальное значение коэффициента a1 (при Ik ==0). Поэтому любому току Ik будет соответствовать большее значение a, а значит, и большее значение а, чем при Iб = 0.

Рис. 6. Вольт-амперные характеристики тринистора при положительном токе базы.

Решая (10) относительно M и используя выражение для характеристики в области ионизации, не-. трудно представить вольт-амперные характеристики тринистора в форме Uк (Iк ):

Uк =Um [(1- a Iк + Iк 0 +a1 Iб )/ Iк ]1/n (11)

В частном случае, при Iб = 0, получается характеристика динистора (3). Выражение (11) ясно показывает, что данному току Iк соответствует тем меньшее напря­жение Uk , чем больше ток Iб (рис.6). Рассмотрим отдельные уча­стки этого семейства.

На начальном участке мы имеем по существу семейство характерис­тик обычного транзистора в схеме ОЭ.

Координаты точек прямого переключения определяются, как и в динисторе, условием dUk /dIk , == 0. Анализ показывает, что ток Iп.п возрастает с увеличением тока базы.

На рис. 7 показана пусковая характеристика тринистора, т. е. зависимость Uп.п ( Iб ) .

Координаты точки Н, в которой напряжение на коллекторном переходе П2 падает до нуля, определяются условием Uk = 0 в формуле (11).

Так же как в динисторе, можно в этой точке считать a @ 1 и опре­делять ток Iн из условия

a=a1 (Iн + Iб )+ a3 (Iн )==1. (12)

Отсюда видно, что увеличение тока Iб , а значит, и коэффициента a1 сопровождается уменьшением коэффициента a3 , а значит, и тока Iн . Соответственно несколько меньше будет и ток Io. п в точке обратного переключения.

Параметры тринистора в открытом состоянии практически не отличаются от параметров динистора, поскольку ток Ik в этой области значительно больше тока Iб , и поэтому токи обоих крайних переходов почти одинаковы.

К-во Просмотров: 398
Бесплатно скачать Реферат: Тиристоры и некоторые другие ключевые приборы