Реферат: Тригонометрия алгебра
ARCSIN a
-p/2Јarcsin a Јp/2 sin(arcsin a)=a
arcsin (-a)= -arcsin a
a | 0 | 1/2 | Ц2/2 | Ц3/2 | 1 |
arcsin a | 0 | p/6 | p/4 | p/3 | p/2 |
SIN X= A
x=(-1)n arcsin a +pk
sin x=0 | x=pk |
sin x=1 | x=p/2+2pk |
sin x=-1 | x=-p/2+2pk |
ARCCOS a
0 Јarccos a Јp cos(arccos a)=a
arccos (-a)=p -arccos a
a | 0 | 1/2 | Ц2/2 | Ц3/2 | 1 |
arccos a | p/2 | p/3 | p/4 | p/6 | 0 |
COS X= A
x=± arccos a +2pk
cos x=0 | x=p/2+pk |
cos x=1 | x=2pk |
cos x=-1 | x=p+2pk |
ARCTG a
-p/2Јarctg a Јp/2 tg(arctg a)=a
arctg (-a)= -arctg a
a | 0 | Ц3/3 | 1 | Ц3 |
tg a | 0 | p/6 | p/4 | p/3 |
TG X= A
x=± arctg a +pk
sina*cosb=1/2[sin(a-b)+sin(a+b)]
sina*sinb=1/2[cos(a-b)-cos(a+b)]
cosa*cosb=1/2[cos(a-b)+cos(a+b)]
sina*cosb=1/2[sin(a-b)+sin(a+b)]
sina*sinb=1/2[cos(a-b)-cos(a+b)]
cosa*cosb=1/2[cos(a-b)+cos(a+b)]
sina+sinb=2sin(a+b)/2 * cos(a-b)/2
sina-sinb=2sin(a-b)/2 * cos(a+b)/2
cosa+cosb=2cos(a+b)/2 * cos(a-b)/2
cosa-cosb=-2sin(a+b)/2 * sin(a-b)/2
(a+b)2=a2+2ab+b2
(a-b)2=a2+2ab+b2
(a+b+c)2=a2+b2+c2+2ab+2ac+2bc
a2-b2=(a-b)(a+b)
--> ЧИТАТЬ ПОЛНОСТЬЮ <--